English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70588/70588 (100%)
Visitors : 23126977      Online Users : 537
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69433

    Title: Convergent Cross Mapping (CCM) 方法對預測因果關係的評估;Assessment of Convergent Cross Mapping (CCM) Method by Using time-series data of Known Causality
    Authors: 陳學金;Ting,Hock-King
    Contributors: 物理學系
    Keywords: 因果關係;Convergent Cross Mapping;CCM;causality
    Date: 2016-01-28
    Issue Date: 2016-03-17 20:37:29 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在許多不同的研究領域,揭開兩個物理量X和Y之間的因果關係
    是一項重要的工作。X→Y表示X影響Y。Convergent Cross
    Mapping (CCM) 是一個檢測因果關係的方法。這論文在介紹了
    CCM 的運作原理之後,我們將使用兩個已知因果關係的時間序列
    X(t)和Y(t) 去對CCM 進行評估,且 X(t)和Y(t) 具有相同或不同
    (即混沌、週期振盪以及穩定點) 的動力學行為。當X(t)和Y(t) 同
    步的時候,CCM 無法區分 X和Y 的因果關係。最後,這論文將討
    論透過三個節點和一百個節點的環網絡對CCM 所進行的評估結果。;In many different areas of research, it is important to uncover the interaction or causal relation between two dynamical quantities (such as X(t) and Y (t)). If X is the cause and Y is the effect, then X will influence/drive Y . Such a causality or directed interaction can be denoted as: X drives Y . Convergent Cross Mapping (CCM) is a method used to detect the causality between X and Y .
    In this thesis, the working principles behind CCM (i.e. state space reconstruction and cross estimation) will first be introduced. Then, the CCM method is assessed by using it to detect the causality of X and Y , in which they were generated by solving a system of coupled dynamical equations numerically. Since X(t) and Y(t) are two time series of known causality (e.g. X drives Y), the accuracy of the CCM method could be assessed by plotting sigma(X drives Y) versus gXY and sigma(Y drives X) versus gXY on the same graph, where sigma is a CCM accuracy indicator and gXY is the
    coupling strength of X drives Y. For further assessment, CCM method is applied to detect the causality of X and Y of different combinations of dynamical behaviours (i.e. chaos, periodic oscillations and stable fixed point). It was found that when X(t) and Y(t) synchronize, CCM is unable to distinguish the true causality from the non-existing causality.
    From the 3-node (X drives Y drives Z) motifs analysis, it was found that CCM method would misinterpret the existence of X drives Z, when both X and Y synchronize. Apart from that, the existence of the conflicting information would also affect the sigma value computed by the CCM method.
    Finally, the sigma versus g curves for 2-node and 100-node (ring network) of different connectivities and ranges of g are plotted on the same graph. This is to investigate the universality of the sigma versus g relation. It was found that the true causality curve of 2-node unidirectional case fits the Power Law: sigma proportional to g^(-0.6). There
    are a number of cases of points which fall on or close to the true causality curve of 2-node unidirectional case. The deviations of the rests of the points from the true causality curve are either due to the A drives B drives C effect or the conflicting information problem or both.
    Appears in Collections:[物理研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明