中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/69510
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41649470      Online Users : 1365
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69510


    Title: 四維度之加權映射之研究;Weighted Blowups to Cyclic Quotient Terminal Singularity in Dimension 4
    Authors: 林皓正;Hao_cheng,Lin
    Contributors: 數學系
    Keywords: 加權映射
    Date: 2016-01-27
    Issue Date: 2016-03-17 20:47:29 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 這篇論文先介紹森理論中的極小模型理論,接著會看到川又雄二郎先生所計算的結果,他證明在三維度極小模型理論的某種雙有理映射的唯一性。而對於這樣的結果是否能推廣到高維度?事實上,四維度的情形必須要有所限制才能使得該映射唯一。而我在這邊論文裡的計算將會得到一些反例,證明在高維度的情況下存在無限多種的映射。;In this thesis, we shall introduce the Mori program and minimal model program. Kawamata proved that extremal divisorial contraction X->Y which contracts a divisor to a cyclic quotient terminal singularity is unique for threefold case. However, this result may have trouble in higher dimension. In the end of this thesis, we provide some counterexamples and partial results showing that there may be infinitely many choices of the weighted blowups which contracts a divisor to a cyclic quotient terminal singularity in dimension 4.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML529View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明