English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41644996      線上人數 : 1241
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7024


    題名: 以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究;Fabrication of P type and N type Hydrogenated Microcrystalline Silicon Thin Films Using RF Magnetron Sputtering
    作者: 鄧旭軒;Shu-Shuan Deng
    貢獻者: 光電科學研究所
    關鍵詞: 微晶矽薄膜;物理氣相沈積法;太陽能電池;microcrystalline silicon thin film;PVD;Solar cell
    日期: 2008-06-30
    上傳時間: 2009-09-22 10:35:08 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 由於能源危機的問題,薄膜式太陽電池的研究引起很多專家學者的注意。目前最普遍為民生所使用的太陽電池是由電漿輔助化學氣相沈積法(plasma-enhance chemical vapor deposition, PECVD)所製作出的非晶矽薄膜太陽電池[1][2],但是PECVD 在製程上需要昂貴的設備費及使用有毒、易燃氣體矽烷( silane , SiH4),而且微晶矽薄膜比非晶矽薄膜電性更佳,因此本研究主旨在探討使用射頻磁控濺鍍製作P型和N型微晶矽薄膜應用於薄膜式太陽電池的研究。利用調變不同靶材面積和氫氣流量來改變硼原子和磷原子的摻雜量,製作出微晶矽薄膜,並量測其特性。將實驗所製作出的薄膜量測Alpha-Step、XRD、導電率、載子濃度、載子遷移率、活化能等,得到薄膜的結構和電性的結果,作分析與比較。於實驗中發現,以射頻磁控濺鍍系統所製作出的微晶矽薄膜,P型矽薄膜導電率最佳值在硼顆粒約佔靶材面積30%和氫氣流量為9sccm時,其導電率為3.79×10-2(S/cm),結晶大小為4.84nm,由霍爾量測得到載子濃度約為3.34×1018cm-3載子遷移率為0.516 cm2/V-S,活化能為0.044ev;N型矽薄膜導電率最好的參數為靶材放置是矽靶加上3/4wafer且氫氣流量為7sccm時導電率可達到9.66×10-3(S/cm),結晶大小為12.5nm,霍爾量測儀所量測出來的雜質濃度約為1.11×1018cm-3,載子遷移率為0.525cm2/V-S,活化能為0.11ev。兩者都有符合做太陽能電池元件n和p型微晶矽薄膜特性的要求。In the last decades, the researches of thin film solar cells have attracted much attention for the reason of the energy crisis. Plasma-enhance chemical vapor deposition (PECVD) is the most popular method to fabricate silicon thin film solar cells. The disadvantages of PECVD are the high facility cost and using the toxic processing gases such as silane (SiH4), B2H6 and PH5. To solve the problem the reactive radio frequency sputtering deposition was applied in this research, which is a safe and cheap method to fabricate the doped hydrogenated microcrystalline silicon without using any toxic gas. The p type and n type hydrogenated microcrystalline silicon (μc-Si:H) thin films were fabricated with the different concentration of the doped target and the hydrogen gas flow. The properties of the films were measured using Alpha–Step, XRD, conductivity, carrier concentration, carrier mobility, and activation energy measurement. The results show that when the boron grains occupied 30% of the p type silicon target area and hydrogen flow 9sccm, the best conductivity is achieved at about 3.79×10-2 S/cm for the p type μc-Si:H thin film. The μc-Si:H grain size is 4.84nm in the film. The activation energy is 0.044ev. Using Hall measurement, the carrier concentration is achieved at 3.34×1018cm-3 and carrier mobility 0.516cm2/V-S. Besides, when n type silicon wafer occupied 75% of the silicon target area and hydrogen flow 7sccm for the n type μc-Si:H thin film, the best conductivity is achieved at about 9.66×10-3 S/cm. The μc-Si:H grain size is 12.5nm in the film. The activation energy is 0.11ev. Using Hall measurement, the carrier concentration is achieved at 1.11×1018cm-3 and carrier mobility 0.525cm2/V-S. Both results have met the requirements of p type and n type μc-Si:H thin films for the application of thin film solar cells.
    顯示於類別:[光電科學研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明