一維透明導電氧化物奈米材料被認為是未來軟性電子產品的關鍵材料之一。目前氧化物奈米線若採用低溫製程製備則多有成長速率太慢的缺點;若以高溫成長方式,則必須多一道繁瑣的奈米線轉移至目標基板的步驟,因此開發低溫快速成長製程將能促進奈米線落實在實際應用層面。 我們首次以電漿迴旋共振化學氣象沉積法製備氧化銦奈米線。以蒸鍍之銦奈米粒子作為金屬來源,藉由調整不同氧分壓獲得不同表面形貌與結晶結構的氧化銦奈米線。在此研究中觀察到在氧分壓低的成長範圍下(PO2<5E-2 mTorr),金屬銦擴散至氧化銦薄膜表面後,發生氧化反應後形成InOx作為成長奈米線的前驅物來源。而在氧分壓高的成長範圍下(2E-1低溫成長且高產率的氧化銦奈米線被應用多晶與銅銦鎵硒太陽能電池之抗反射結構中。在200 oC製備不同氧化銦奈米結構的長度與直徑對於多晶太陽能電池之抗反射性質之探討;在短路電流的提升可由35.39 至 38.33 mA/cm2。而在120 oC的成長溫度製備半圓球與奈米柱之氧化銦奈米結構,於銅銦鎵硒太陽能電池之抗反射層;其太陽能電池效率可由11.10%增加至 11.46% (半圓球結構)與 11.77 %(奈米柱結構)。 ;One-dimensional transparent conductive oxide nanomaterial is considered one of the key materials of flexible electronics products in future. Currently, the low temperature preparation process for oxide nanowire has the disadvantage of low growth rate; if use high temperature preparation process, it must add a tedious post-growth transfer step. Therefore, developing low temperature and rapid growth process will be able to promote nanowires for applications. Plasma-assisted growth of indium oxide nanowires (InO-NWs) were performed in electron cyclotron resonance (ECR) plasma with an O2-Ar system using indium nanocrystals as seed particles. In the low O2 partial pressure (PO2<5E-2 mTorr), the directly oxidation of indium which is diffusion from inner core through a thin InO layer by indium diffused from inner core to the surface of the thin InO layer can serve as the nucleation sites on the surface of thin InO layer. The morphologies and crystallinity varied with the O2 partial pressure. It high O2 partial pressure (2E-1Light harvesting by InO-NWs as an antireflection layer on multi-crystalline silicon (mc-Si) and copper indium gallium selenide (CIGS) thin film solar cells has been investigated. The size-dependence of antireflection properties of InO NWs on mc-Si solar cells was studied. A considerable enhancement in short-circuit current (from 35.39 to 38.33 mA/cm2) without deterioration of other performance parameters is observed for mc-Si solar cells coated with InO NWs. The two InO-NSs grown at 120 oC were demonstrated on CIGS thin film solar cells and the efficiency can be enhance from 11.10%, 11.46 % to 11.77 % for the reference cell, those with InO-hemispheres and InO nanorods.