English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634010      線上人數 : 3505
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/704


    題名: 應用探測車法預測高速公路旅行時間;Using probe vehicle method in highway travel time forecasting
    作者: 李季森;Chi-Shen Lee
    貢獻者: 土木工程研究所
    關鍵詞: 模擬;探測車;旅行時間預測;變換車道;類神經網路;Artificial neural network;Lane change;Travel time forecasting;Probe vehicle;Simulation
    日期: 2002-07-10
    上傳時間: 2009-09-18 17:10:40 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 於未來高速公路路網建置完成後,適當交通資訊之提供對用路人行為決策更顯得其重要,且就由高速公路旅行時間之提供而言,不僅可做為駕駛者選擇適當之路徑與出發時間,用路者亦可藉此選擇最短之旅行時間到達目的地,以真正發揮高速公路路網之整體績效,再者,利用即時之交通資料預測未來旅行時間,乃是先進旅行者資訊系統不可或缺之交通資訊。 本研究係針對國內高速公路用路者之變換車道行為與變換車道時間進行探討與推導相關公式,並進一步撰寫模擬程式,進而探討不同預測時間、流量、探測車混合比例與區段長度等相關參數之實驗組合,再者,利用探測車所收集之相關資料,透過類神經網路進行旅行時間之預測,以期提供精準之旅行時間預測,藉此作為用路人路徑選擇或是出發時間決策判斷之依據。 經由反覆的校估與測試之結果可知,本研究所構建旅行時間預測模式是屬於「高精準預測」,因此於高速公路旅行時間之提供方面,可做為交通相關單位參考。 In the future, after freeway network have been build. When drivers have to make a decision, it is more important for drivers to use duly traffic information. Traffic information will allow drivers to select appropriate routes and departure time to avoid congestion and arrive the destination using the shortest time. With the advent of Advanced Traveler Information System, the prediction of short-term link and corridor travel time has become increasingly important. Therefore, it is necessary to forecast future travel time effectively for Advanced Traveler Information System and users. This research is therefore aimed at establishing a microscopic simulation method to obtain the optimal forecasting highway travel time and use backpropagation algorithm to build forecasting highway travel time models. The simulation model discussed different traffic flow; different percent of probe vehicle and different interval length. Using simulation to produce the relative data of traffic character detected by probe vehicle sequentially for the base of artificial neural network training and testing. After repeatedly correcting and testing, the effect of forecasting model constructed in the research is very well .As to the result, this research can be provided to forecast travel time in real-time highway travel time estimation.
    顯示於類別:[土木工程研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明