English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24619248      Online Users : 425
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71115

    Title: 不同空調通風條件對於負壓隔離病房內之CFD模擬
    Authors: 李思翰;Li,Si-Han
    Contributors: 土木工程學系
    Keywords: 負壓隔離病房;送風口配置;送風角度;negative pressure isolation ward;outlet configuration;air outlet angle
    Date: 2016-07-20
    Issue Date: 2016-10-13 12:07:18 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 負壓隔離病房收容之病患,其疾病具有高度傳染力,包含肺結核、SARS,對於院內人員有相當大之健康風險。至今許多國家在負壓隔離病房之空調設計上已有建造指引與特殊設計規範,包括送排風口位置、送排風量差異、每小時換氣次數以及病房內外之壓力差值等。其中,室內氣流型態與室內負壓為重要之安全指標。


    由綜合比較與分析得知,建置良好效能之負壓隔離病房首要應先確保空調之設計能形成良好之室內氣流型態並提供足夠之負壓。;Negative pressure isolation wards accommodating patients affected highly contagious disease, comprising tuberculosis, SARS and so on, result the considerable health risks in the hospital staff.
    Up to now, many countries have construct air-conditioning design and construction guidelines for special design specifications, including the supply and exhaust openings, the supply and exhaust amount, ACH, and the pressure difference inside and outside the ward. The indoor airflow patterns and indoor negative pressure is two of the most important indicator of safety.
    In order to verify if the existing ward system can achieve the effect of negative pressure and isolation, and to understand the characteristics of the flow field of indoor air under different air conditioning and ventilation.
    In this study, use computational fluid dynamics software FLUENT15.1 to build a model according to the size of Taiwan′s current actual negative pressure isolation wards and the wards including the patient area, toilet area, front room area. In the mean while, the setting of parameters follows the negative pressure isolation wards specification standard operating manuals. Under conditions of ACH 12 times, this study is divided into six modules to simulate and analyze to rate preferred set of configuration and air outlet angle, even can save energy. The results can provide basis for future deployment and improvement of ward.
    Our verification for each module shows that, the negative pressure achieving good results, but may not be able to avoid the diffusion of pollutants within the ward.
    The simulation results show that air outlet is disposed in the side wall supplying at a 30 degree modules achieving the best effect of negative pressure and isolation.
    By a comprehensive comparison and analysis that, to establish a negative pressure isolation wards good performance of the primary should ensure that the air conditioning can be formed in a well-designed interior airflow patterns. Furthermore, the negative pressure is adequate.
    Appears in Collections:[土木工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明