傳統型複合全像術是將二維的物體影像資訊以垂直條紋記錄在全像片上,所以重建時就會有一條一條垂直的暗紋呈現在影像上,此種情形稱之為「柵欄效應」。「柵欄效應」的問題可以由本實驗室先前的研究以成像面的拍攝方式解決。先前實驗室學長姐所提出的成像面圓錐型複合全像術,是在拍攝時在物光系統及參考光系統中加入柱狀透鏡,改善全像片因彎折所產生的「像散效應」(astigmatic effect)。 在本論文中,我們不在物光系統及參考光系統中加入柱狀透鏡,而是利用影像回推製作出彎折物面,並將物體影像資訊直接成像於已經彎折成圓柱曲面的全像底片上進行拍攝。但是在實驗過程中發現,經過影像回推而製作的彎折物面曲率實際上近乎平面,於是我們使用平面LCD來取代彎折物面當作輸入影像面。由於我們使用平面物面拍攝彎折圓柱型底片,在成像的過程中圓柱底片面上的像點會有些許誤差,所以我們計算出透鏡的成像孔徑來分析LCD物點成像至圓柱底片面上各像點的誤差,並判斷此誤差是否在人眼的解析度範圍內。全像片在拍攝完成後不需要再彎折成圓柱曲面,因此繞射光會收斂成一點在正確位置,而觀賞者將看到一個前浮式的影像在圓柱中心軸上且不會產生像散效應。最後我們以電腦模擬全像片的拍攝過程和觀賞者所能觀看到的方塊影像,並分析重建影像時觀賞者改變位置所觀看到之三維影像的變化。 ;Conventional multiplex holograms are composed of 2D image information in a sequence of long, thin and fan-shape areas of the recording film. As the result, the reconstructed image will be over laid by many black stripes. It looks like viewing an image through a fence, called the "picket-fence effect". This problem can be amended by using the image-plane technique. In the previous study, cylindrical lenses are added in the object beam and the reference beam to compensate for the "astigmatic effect", when the hologram is curved into a conical or cylindrical surface. In this study, we use the method of image-plane technique of cylindrical holographic stereogram, and we reshape the object information plane by ray-tracing without cylindrical lenses in both of the object and the reference beam. After we found the curved object information plane, we found the curvature approaching flat. Therefore, we replace the curved object plane with LCD and calculate the effect of the lens aperture on the broadening of the image point on the cylindrical surface. We simplify the step in the experiment by bending the film into a cylinder before holographic exposure, and the observer can perceive a 3D real image generated near the axis of the hologram cylinder without astigmatic effect. We use numerical calculation to simulate the holographic process and the reconstructed 3D images observed at different positions.