本研究中提出以軟性電路板為核心之設計雙向4通道 × 25-Gbps的光學連接收發模組,模組中整合了高分子聚合物波導、45˚微反射面、發射端雷射驅動晶片、接收端轉阻放大器晶片、垂直共振腔型面射型雷射、光偵測器於軟性電路板上。 經由光學模擬,發射端中之面射型雷射出光經過高分子聚合物波導並耦合進入多模光纖,其最佳的耦光效率為73.5 %;接收端中多模光纖出光經過高分子聚合物波導並耦合進入光偵測器,其最佳的耦光效率為51.4 %。設計後之軟板光路,在面射型雷射與光偵測器的對位封裝上,最佳光學效率降至-1 dB 時的位移容忍度為±10 μm以上,滿足覆晶封裝的製程。各通道間的光學串音干擾在發射端與接收端皆小於-40 dB以下。 經由高頻模擬,模組中發射端與接收端中所設計之單端式高頻傳輸線,其S11皆小於-15 dB、S21皆大於-0.4 dB。模組內所設計之差動式扇狀高頻傳輸線,在0 ~ 50 GHz下,四個通道的S11皆小於-10 dB、S21皆大於-2.2 dB。 提出初步設計在印刷電路板上的25-Gbps差動式傳輸線,在0 ~ 40 GHz及1-mm傳輸長度的情況下,其模擬之S11皆小於 - 19 dB、S21皆大於 - 0.11 dB。 ;In this thesis, we proposed the design of 4-channel 25-Gbps optical transceiver using polymer waveguide on a flexible printed circuit board (FPC), where the 45˚ micro-reflector, VCSEL, PD, receiver IC and transmitter IC are integrated on the flexible printed circuit board to demonstrate the high-speed optical interconnects. The simulation result of maximum optical coupling efficiency is around 73.5 % from the VCSEL to 50-μm-core MMF via polymer waveguide. The simulation result of maximum optical coupling efficiency between MMF and PD via a polymer waveguide is around 51.4 %. The 1-dB alignment tolerances for both VCSEL/PD at the input/output port are larger than ±10 μm. The inter-channel optical crosstalk at both Tx and Rx is smaller than -40 dB. According to the simulation results, S11 and S21 of designed single-ended transmission lines at Tx and Rx is below -15 dB and above -0.4 dB. The S11 and S21 of designed differential-pair transmission lines is below -10 dB and above -2.2 dB at 0 ~ 50-GHz. The initial-design of 25-Gbps differential-pair transmission lines on printed circuit board is proposed. According to the simulation results, S11 and S21 is below -19 dB and above - 0.11 dB at the condition of 0 ~ 40-GHz and 1-mm transmission length.