English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65421/65421 (100%)
Visitors : 22277080      Online Users : 178
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71558


    Title: 以類神經網路演算法水壓及水流同步控制器之研發
    Authors: 廖承偉;Cheng-Wei,Liao
    Contributors: 光機電工程研究所
    Keywords: 類神經網路;微控制器;倒傳遞演算法
    Date: 2016-07-05
    Issue Date: 2016-10-13 13:16:35 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 流量控制在於 各種產業、生活中應用相當廣泛。配合控制法則與感測器技術,利用程式進行各項參數之輸出,達到精確 輸出控制,如加工產業、醫療用途民生水等。然而針對水壓與流同步控制並未有相關研究,故本文 提出 利用類神經網路達到水壓水流同步控制方法。
      本論文利用PC-based設計水流控制設備,結合Arduino微控制器透過藍芽無線傳輸模組接收與發送感測器訊號以及控制訊號。利用LabVIEW將水壓、流量以及其控制訊號透過類神經網路及倒傳遞演算法,進行類神經網路訓練,將其輸出達到最小誤差符合需求。將訓練好的類神經網路參數透過LabVIEW人機介面作為類神經網路參數值,使得水流控制系統能夠達到我們設定之輸出。並且將水壓與流量輸出透過藍芽通訊模組回傳至人機介面上,讓使用者能夠隨時觀察當前水壓與流量輸出狀況。
    ;Flow control is widely used in various industries and human lift e. Combined control’s law and sensor technology, we can precisely control the flow system by from a computer program to modify the every parameter. Flow control has a very wide range of application like processing industries, medical applications and people’s livelihood water. However, the water pressure and flow synchronization control doesn’t have the relevant research. Therefore, this paper proposes the use of neural network control methods control the pressure and flow of water synchronously.
    In this paper, we use PC to design the flow control equipment, and combined with Arduino micro controller receiving and transmitting sensor’s signals and control’s signal by Bluetooth wireless transmission module. We used LabVIEW software to pressure, flow, and control signals through the neural network training, minimum error output in line with demand. We used LabVIEW software to compute pressure, flow, and control signals through the neural network training, and let output in the minimum error. The trained neural network parameters as neural network parameters through HMI LabVIEW makes flow control system to achieve the output we have set. And the pressure and flow rate output via Bluetooth communication module back to the man-machine interface, allowing users to always observe the current output pressure and flow situation.
    Appears in Collections:[光機電工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML273View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明