English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24633873      Online Users : 375
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71574

    Title: 太陽能電池隨插即用動態分配自鎖輸出功率之研究;Design Dynamic allocation self-locking output power of Solar Cell with Plug and Play
    Authors: 陳啓光;Chen,Chi-Kuang
    Contributors: 光電科學與工程學系
    Keywords: 動態分配;直流對直流轉換器;數位訊號處理器;dynamic allocation;DC/DC convertor;DSP
    Date: 2016-08-18
    Issue Date: 2016-10-13 13:17:59 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究的重點在設計一個新穎直流對直流轉換器,應用於太陽能供電系統(如太陽能面板)中,藉由其內部Switch (SW)的切換與儲能的功能,使系統輸出能量可達到動態分配自鎖輸出功率。
    不用 DSP(Digital Signal Processor數位訊號處理器)、不需龐大運算器增加成本,隨著系統的擴充與改變仍然是由系統的硬體進行做切換的控制,在應對負載的改變時,系統可以立即做輸出能量的動態分配與處理。
    ;The focus of this study is to design a novel DC/DC convertor for
    Solar energy generation system (e.g. solar panels) that applies its built-in switch and an energy storage functions to achieve a system that offers dynamic allocation and self-locking of the output power.
    The first advantage of using this novel design is to overcome the
    decayed output efficiency of a solar energy generation system due to the common material aging phenomena. This newly invented DC/DC convertor can automatically recover its output power efficiency from an already inefficient and decayed solar-panel device.
    Secondly, if the solar panel is blocked from sunlight and hence
    induce a lower output power, this DC/DC convertor can utilize its dynamic allocation property to achieve the system’s maximum output efficiency.
    In addition, if a solar panel suffers partial damage to its internal cell,
    the internal circuitry will experience unwanted energy loss accompanied by abnormal temperature rise that may further damage the entire system. However, dynamic allocation design enables the power generated by individual solar-cell unit to be transferred into the DC/DC convertor independently. Therefore, the total loading of the output power is shared amongst each cell and hence reduce the overall power loss caused by overheating.
    Finally, the aforementioned independent weighting allocation
    function and self-locking mechanism is accomplished entirely utilizing hardware design and not by the Digital Signal Processor (DSP), and therefore, there is no need for a costly CPU. As the system change and upgrade overtime, this switch control function is still based on the system’s hardware. When the device’s loading fluctuated, this system will be able to respond and dynamically allocate the output powder.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明