English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23069813      Online Users : 739
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71584

    Title: 光柵分色應用於背光系統之實用化研究;Practical Study of grating separations used in the backlight system
    Authors: 葉尚祐;Yeh,Shang-Yu
    Contributors: 光電科學與工程學系
    Keywords: 光柵;橢圓柱狀透鏡微結構;背光模組;Grating;array of elliptical cylindrical lenses;Backlight
    Date: 2016-08-19
    Issue Date: 2016-10-13 13:18:43 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本論文欲利用雙層光柵期望將光源進行分光,藍、綠、紅光波長混合
    在使用理想光源時,在色域圖上面積最高可以達到NTSC 的80.11%;
    在能量利用率上,最佳效率有70.73%遠比使用彩色濾光片時高。在考慮實際背光的角度下,同樣架構在色域圖上面積有NTSC 的65.86%,在能量利用率上,效率有43.13%依然比使用彩色濾光片時高。此結果說明將光柵分光利用在背光系統可改善目前使用彩色濾光片導致效率較低之問題。;This study proposes a feasible design of color separation for a collimated
    backlight to realize a color-filter-free liquid crystal display (LCD). The design
    includes a double-sided saw-tooth grating and array of elliptical cylindrical lenses
    attached to the LC panel. The double-sided saw-tooth grating can diffract the
    collimated light beam composed of red, green, and blue light beams; and separate
    them from each other for about 5 degrees, which is the key point to realized color
    However, the efficiency of the main-order diffraction decreases as increase in
    the separation angle between the color light beams. To overcome this problem,
    we design the array of elliptical cylindrical lenses to concentrate the diffracted
    color light beams on the corresponding subpixel and let the subpixel receive the
    color light beams of different diffraction orders. For an ideal collimated backlight
    with a half angle of 2.5 degrees and three light sources of 465, 530, and 625 nm,
    the optimal design performs color gamut 80.11% and optical efficiency 70.73. For
    a practical collimated backlight with a half angle of 5 degrees (5-degree FWHM)
    and three LED light sources (considering wavelength width), the optimal design
    performs color gamut 71% and optical efficiency 37.16, whose color gamut is
    comparable and efficiency is increased 30% as compared with the traditional LCD.
    Appears in Collections:[光電科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明