English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23150953      Online Users : 778
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71740

    Title: 有機發光二極體激子光電特性模擬研究
    Authors: 蕭信助;Siao,Sin-Jhu
    Contributors: 能源工程研究所
    Keywords: OLED電模擬;空間電荷限制電流;電荷遷移率;能量轉移;電極淬熄;激子;Electrical simulation of OLED;Space Charge Limited Current;Mobility;Energy transfer;Electrode quenching;Exciton
    Date: 2016-08-30
    Issue Date: 2016-10-13 13:49:49 (UTC+8)
    Publisher: 國立中央大學
    Abstract: OLED發光原理是由於電子、電洞在發光層內再結合形成激子,激子從激發態回到基態時會發光,而激子的生成與電子、電洞的注入濃度以及有機材料的電荷遷移率有關。為探討有機層中的激子數,本論文利用空間電荷限制電流法,依據有機材料實際情況,來計算有機材料的電荷遷移率,接著考慮主發光體與客發光體之間的能量轉移的關係,及考慮電極淬熄對激子的影響,再結合所推算之電荷遷移率,建立模擬模型,以模擬出激子在有機層內的分布情況。
    ;The principle of OLED light-emission lies in the recombination of electrons and holes, resulting in the generation of excitons in the organic layers. The excitons emit light when they return to the ground state from the excited state. Since the generation of excitons relates to the concentrations of injected electron and hole, mobility of material, etc, this study explored the mobility by the method of space charge limited current (SCLC) according to the actual material conditions. Then, the energy transfer between the host and the guest materials and the electrode quenching effect on excitons were considered along with the measured mobility for calculating the exciton density distribution within the organic layers.
    Afterward, the exciton density distribution curve was correct by the measured current density. With the integral of exciton density distribution curve, the number of excitons within the organic layers was calculated, and the relationship between the current density and the number of excitons were derived. Finally, luminance of OLED elements was measured to explore the relationship between the number of excitons and the luminance and to set up an electronic simulation model for predicting the performance of OLED devices.
    Appears in Collections:[能源工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明