English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24626677      Online Users : 346
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71913

    Title: 三種時間相依的接受者作業特徵曲線下面積估計方法之比較與修正;Comparing and correction for the method of estimating three kinds of time-dependent Area under the Receiver Operating Characteristic curve.
    Authors: 張雅玟;Chang,Ya-Wen
    Contributors: 統計研究所
    Keywords: 接受者作業特徵曲線下面積;時間相依接受者作業特徵曲線下面積;附帶型敏感度;動態型特異度;部分概似函數;聯合模型;area under the Receiver Operating Characteristic curve;time-dependent area under the Receiver Operating Characteristic curve;incident-sensitivity;dynamic-specificity;partial likelihood function;joint model
    Date: 2016-07-13
    Issue Date: 2016-10-13 14:06:04 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在醫學診斷中,通常會記錄病患回診所測量的共變數值,即為時間相依的
    共變數值,有了長期追蹤資料的性質,即不適用一般的接受者作業特徵曲線下面積(AUC)來判斷生物指標對於疾病預測能力的程度,因此根據 Heagerty 和 Zheng (2005) 和 van Houwelingen, Putter (2012) 以及 Blanche, Dartigues 和 Jacqmin-Gadda (2013) 所提出的方法,皆可用來估計時間相依的AUC。由於上述的三種方法皆為依據 Heagerty 和 Zheng (2005) 的架構再分別透過不同的估計方法去計算時間相依的AUC,因此本論文主要針對 Heagerty 和 Zheng (2005) 的方法並進一步透過模擬和實例分析來探討隨著時間的不同,AUC 對於生物指標預測疾病能力的程度。由於 Heagerty 和 Zheng (2005) 是使用部分概似法,其需要完整的共變數歷史且不允許有測量誤差,因此本論文預期使用聯合模型可以解決部分概似函數的缺失問題,
    使得時間相依的AUC可以有更精確的估計結果。;In the medical diagnosis, it usually recorded the measurements for covariates of patients with returning to clinic which also called time-dependent covariates. With the property of longitudinal data, it is not suitable for using traditional area under the Receiver Operating Characteristic curve (AUC) to distinguish the biomarkers
    for predicting ability of diseases. According to the methods in Heagerty & Zheng (2005), van Houwelingen, Putter (2012) and Blanche, Dartigues & Jacqmin-Gadda (2013), all can estimate time-dependent AUC. Since these three kinds of methods are mainly based on the approach in Heagerty & Zheng (2005), each method computes time-dependent AUC by different ways. Hence, we focus on the method in Heagerty & Zheng (2005) and explore AUC for biomarkers via simulation and case study. Due to Heagerty & Zheng (2005) using partial likelihood function to compute AUC that needs complete covariate history and doesn’t allow for measurement error. Consequently, this thesis tries to apply joint model approach to solve the problems of partial likelihood function to obtain a better prediction.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明