中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/71915
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41645714      Online Users : 1482
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71915


    Title: 台灣愛滋病實例研究-以聯合模型探討愛滋病患存活時間與相關生物指標之關係;An AIDS case study in Taiwan - Using joint model to explore the relationship between the survival time of AIDS patients and related biomarkers.
    Authors: 林家聿;Lin,Jia-Yu
    Contributors: 統計研究所
    Keywords: 聯合模型;長期追蹤資料;線性混合效應模型;加速失敗時間風險模型;EM 演算法;拔靴法;join model;longitudinal data;linear mixed effects model;accelerated failure time model;EM algorithm;bootstrap method
    Date: 2016-07-13
    Issue Date: 2016-10-13 14:06:10 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本篇論文利用CD4細胞數和病毒乘載量來預測愛滋病患的發病時間,並探討愛滋病患接受雞尾酒療法是否有療效。有重複測量的長期追蹤資料常常因為機器、人為測量誤差或生物體本身的差異,造成觀測上的誤差,因此本研究利用聯合模型來解決這樣的問題。在生物指標的部分,使用線性混合效應模型對長期追蹤資料軌跡做配適;在事件時間的部分,使用加速失敗時間風險模型描述共變數與存活時間的關係,再結合這兩個部分建構出聯合模型,並使用EM演算法對參數做估計,其中使用拔靴法來估算參數估計值的標準差。

    關鍵字:聯合模型、長期追蹤資料、線性混合效應模型、加速失敗時間風險模型 、EM演算法、拔靴法。;In this thesis, we use CD4 and viral load to predict AIDS patients’ time to death and explore whether HAART works or not when patients were treated with it. The study which contains longitudinal covariates and survival time information is usually subject to measurement errors. Thus, we use joint model to solve this problem instead of partial likelihood approach. The approach uses linear mixed effects models to fit the longitudinal part and conducts the likelihood ratio test to select the suitable longitudinal model, and utilizes the accelerated failure time model to describe the relationship between covariates and survival time information. We combine these two parts to build a joint likelihood function and estimate the maximum likelihood estimators of all parameters by EM algorithm. The estimates of standard errors are derived by bootstrap method.

    Keywords: join model, longitudinal data, linear mixed effects model, accelerated failure time model, EM algorithm, bootstrap method.
    Appears in Collections:[Graduate Institute of Statistics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML324View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明