English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23265591      Online Users : 581
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71917


    Title: 兩計數母體平均數比較之強韌樣本數計算
    Authors: 洪執中;Hung,Chih-Chung
    Contributors: 統計研究所
    Keywords: 強韌概似函數;負二項模型;樣本數;平行實驗設計;過離散;Robust likelihood;Negative binomial model;Sample size;Parallel design;Over-dispersion
    Date: 2016-07-13
    Issue Date: 2016-10-13 14:06:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本文探討在平行實驗設計下之過離散計數型資料的樣本數計算問題。我們使用經適當修正後,具強韌性的負二項概似函數,發展出一套計算樣本數的方式,此強韌有母數方法在不需知道資料真正分配的情形下亦能提供正確的樣本數。因此,以此強韌有母數方法分析平行實驗設計下之過離散的計數資料與計算所需樣本數是較佳的選擇。
    此外我們也以Zhu & Lakkis (2013)的概念為基礎,推得另一套求取所需樣本數的計
    算方式,並將此方法所得之結果與我們提出的方法算的樣本數做比較。
    ;This thesis proposes a way of calculating sample size that is suitable for general count data and over-dispersed count data in parallel designs. This robust sample size calculation task is accomplished by employing the negative binomial as the working model with a proper adjustment. We use various data configurations in simulation studies to demonstrate the merit of our new approach for calculating sample size. Contrasts are also made with the sample size method proposed by Zhu & Lakkis (2014).
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML283View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明