English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23321904      Online Users : 479
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/71929

    Title: 有母數的強韌適合度檢定
    Authors: 吳偉豪;Wu,Wei-Hao
    Contributors: 統計研究所
    Keywords: 適合度檢定;經驗分配;強韌;伽瑪分配;韋伯分配;對數常態分配;Burr分配;Goodness of Fit;Empirical distribution;robust;gamma distribution;Weibull distribution;lognormal distribution;Burr distribution
    Date: 2016-07-25
    Issue Date: 2016-10-13 14:06:55 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 我們使用伽瑪分配做為模型的假設,利用此分配能夠在分配假設不正確的情況之下,仍然能夠正確的估計母體平均數的特點,來製造新的適合度檢定統計量來檢定資料是否來自某一個特定的分配。本文將選用Kolmogorov-Smirnov (Kolmogorov,1933;Smirnov,1939)、Cramér–von Mises(Cramér,1928;von Mises,1931)與Anderson-Darling(1952)三個檢定統計量作比較。;We take advantage of the property that the gamma distribution is able to deliver consistent estimate for the mean parameter under model misspecification to develop a goodness of fit (GOF) test statistic. We use simulations to compare our novel test statistic with other GOF methods including the Kolmogorov-Smirnov、Cramér–von Mises and Anderson-Darling tests. It appears that our test outperforms in terms of testing power when the underlying distributions are similar to the null hypothesized distribution.
    Appears in Collections:[統計研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明