English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24692083      Online Users : 290
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72024

    Title: 社群論壇之問題檢索;Question Retrieval of Community Forum
    Authors: 翁梓勝;Weng,Tzu-Sheng
    Contributors: 資訊工程學系在職專班
    Keywords: 社群;論壇;問題;檢索;Question;Retrieval;Community;Forum
    Date: 2016-07-20
    Issue Date: 2016-10-13 14:22:18 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 最近這幾年來,隨著網際網路 (World Wide Web) 的發展,社群問答的網站在最近這段時間也成長的非常多,大量的問答網站擁有非常多的資訊形成網路線上一個很有價值的知識寶庫,然而有一個現象,這些網站都會遇到的就是會有重複的問題,因此問題檢索的主要任務就是用來協助從存檔裡面找出之前已經被回答過的相關問題,然而詞語上同義詞性質的多樣性是問題檢索的一個極大挑戰,有些研究方法利用計算新的問題以及存檔問題之間相互關係的機率來處理這樣的狀況,另外也有許多研究是著重在字串之間的相似度。
    在這篇論文裡,我們提出了一個方法首先利用 CBoW 的模型使用華碩 ROG 論壇的資料庫來做訓練資料,然後利用訓練出來的資料計算輸入的新問題以及存檔的問題之間的相似程度,與其他研究不同的地方在於我們將問題的標題以及問題的完整描述分開來看,將他們當作是兩個不同的特徵來做計算,另外我們也將使用者的榮譽點數拿來當做我們評估的一個要素, 我們的實驗顯示,對 ROG 論壇的資料庫做出來的結果優於其他的方法。
    ;In recent years, there has been much development of community based question and answer (cQA) site. The number of large-scale Q&A sites has significantly increased over time, and the information on these sites represents a valuable online knowledge pool. However, one issue with such sites is the problem of duplicate questions. The task of question retrieval aims to find previously answered semantically similar questions in cQA archives. Nevertheless, synonymous lexical variations pose a big challenge for question retrieval. Some approaches address this issue by calculating the probability of correlation between new questions and archived questions. Much recent research has also focused on surface string similarity among questions.
    In this paper, we propose a method that first builds a continuous bag-of-word (CBoW) model with data from Asus’s Republic of Gamers (ROG) forum and then determines the similarity between a given new question and the Q&As in our database. Unlike most other studies, we calculate the similarity between the given question and the archived questions and descriptions separately with two different features. In addition, we factor user reputation into our ranking model. Our experimental results on ROG forum dataset show that our CBoW model with reputation features outperforms other top methods.
    Appears in Collections:[資訊工程學系碩士在職專班 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明