在本篇論文中,我們研究在黏彈 (viscoelastic)介質中半柔軟 (semi-flexible)高分子鍊之動力學。運用泛函積分 (functional integral formalism)的方法,其平衡統計性質可以獲得。 把溶液 的黏彈性反應及其在溶液中的水力作用 (hydrodynamic interactions)考慮在內,我們建構一朗之萬方程 (Langevin equation),並由此計算其正模振幅在頻率空間的相關函數 (power spectrum)我們以最簡單的介質---具有單一特徵時間及多重特徵時 間的介質為例,對相關函數做詳細的分析。 根據以上的分析,我們 提出一個在流變學 (rheology)實驗上的應用,並討論在此系統中, 外加張力所能帶來的實驗長處。 我們發現一個伸張物體的熱擾動可 做為在流變學上一個新的探測物。 In this thesis, the dynamics of partially extended semi- exible chain is investigated. Using a functional integral formalism, the statistical properties are explored. The power spectrum is calculated based on the Langevin equation with preaveraged hydrodynamic interactions and solvent viscoelastic responses taken into account. The normal modes are calculated. We also analyze the power spectra in solvents with a single and multiple relaxation times. The advantage of varying applied tensions are also discussed. We nd that the uctuations of an extended object provides a new experimental probe in rheology. An experiment is proposed and a working recipe is presented.