中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72068
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 70548/70548 (100%)
造访人次 : 23140972      在线人数 : 287
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/72068


    题名: 應用大數據分析開發適性化教材推薦系統;Applying Big Data Analytics to Develop an Adaptive Course Material Recommendation System
    作者: 王傑生;WANG,CHIEH-SHENG
    贡献者: 資訊工程學系
    关键词: 開放教育資源;推薦系統;協同過濾;Clickstream
    日期: 2016-07-22
    上传时间: 2016-10-13 14:24:27 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來開放教育資源(Open Educational Resources)的興起,允許使用者開放
    修改及分享OER 教材並提供教師免費或是低成本的教學資源以降低教師提供課
    程的門檻,提供更多讓學習者受教的機會。
    然而開放式教育資源發展至今,教材數目越來越龐大,導致使用者在為數眾
    多的教材中尋找所需的教材時需要花費大量的時間及人力。本研究所應用的開放
    教育資源平台同樣也遭遇相同的問題,透過將推薦系統導入該平台雖然可以有效
    的減輕教材數目所帶來的影響,然而現有的推薦系統使用內容導向式演算法產生
    與教材內容相關的教材推薦雖然可以推薦相關教材,但是卻缺少使用者回饋,修
    正教材推薦的結果使推薦結果能更加貼近使用者。
    因此,本研究透過蒐集使用者在開放教育資源的瀏覽歷程(Click-stream)作為
    推測使用者喜好的參考,為了處理大量的使用者瀏覽歷程資料,本研究使用Spark
    資料分析框架作為開發工具,將使用者依照喜好相似程度透過分群演算法建立使
    用者族群模型,最後結合瀏覽歷程及使用者族群模型推測使用者的喜好並給予適
    性化的教材推薦,使教材推薦結果更符合使用者需求且幫助使用者縮短搜尋教材
    的時間。;Open Educational Resources has become popular for serval years. It allows user
    to share and revise the open educational resources. By providing no or low cost
    educational resources to institutions and educators brings more opportunity to the
    students to access to education.
    However, with developed for many years the amount of open educational
    resources has become more and more huge, it costs a lot of time for users to find the
    right educational resource and it becomes difficult for users to find the educational
    resources that they really want. This paper find that an open educational resources
    platform has the same problem. Although it already has a content-based
    recommendation system, the lack of user feedbacks leads to it cannot make the
    recommendation result fit to the user requirement.
    In this paper, we collect the click-stream from user as the preference of user. In
    order to deal with vast amount of data, we use Spark to build user cluster model by
    user’s preference. Finally, we combined current user’s preference with user cluster
    model and recommended the adaptive educational resource to current user.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML145检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈  - 隱私權政策聲明