English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41625638      線上人數 : 1955
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/72103


    題名: Performance Study on Tree-based Classification Algorithms for Smartphone Indoor/outdoor Detection
    作者: 李佩臻;Lee,Pei-Chen
    貢獻者: 資訊工程學系
    關鍵詞: 室內外定位;機器學習;手機感測器;indoor/outdoor detection;machine learning;IMU
    日期: 2016-07-27
    上傳時間: 2016-10-13 14:26:23 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來,室內外定位偵測發展蓬勃,已經成為現今不可或缺的技術之一,並具有許多潛在的應用。舉例來說,可以透過定位使用者是否有從室外環境進入到室內環境, 以便協助使用者手機自動關閉GPS功能來節省能源,或是讓使用者手機自動切換靜音模式。本論文利用tree-based learning 演算法 (i.e., decision trees, boosting, bagging, and random forest) 來分類室內與室外定位的資料。並使用10-fold cross validation來驗證分類結果,以避免分類結果有overfitting的問題發生。最後比較各個tree-based learning 演算法分類結果的性能,並找出其中最適合分類室內外定位資料的tree-based learning演算法。在我們實驗中,雖然分類結果普遍偏高,但其中以boosting的演算法為最佳。Boosting在室內外定位資料分析有高達99%以上的正確率。;The indoor/outdoor detection for wireless device has many potential applications. For instance, when a device is detected to enter the indoor environment, it can turn off the GPS chip to save energy. In this thesis, the indoor/outdoor detection is treated as the supervised learning problem. The tree-based learning algorithms (i.e., decision trees, boosting, bagging, and random forest) are built from the training dataset and used to classify test dataset. In addition, the 10-fold cross over is used with the algorithms to mitigate the issue of overfitting. The performance of each algorithm are compared to identify the algorithm most appropriate for the indoor/outdoor detection. Although the final performance of each algorithm seems to be high, boosting provides the best accuracy (99%) for indoor/outdoor detection.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML170檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明