English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23247757      Online Users : 369
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72137


    Title: 主動式學習應用於非侵入式智慧型手機驗證機制之使用者行為建模方法最佳化研究;Optimized Active Learning to Collect User’s Behavior for Training Model Based on Non-intrusive Smartphone Authentication
    Authors: 書瑪寧;Putri,Ika Kusumaning
    Contributors: 資訊工程學系
    Keywords: 非侵入式識別;使用者識別;主動學習方法;支持向量機器;non-intrusive authentication;user authentication;active learning;support vector machine
    Date: 2016-07-28
    Issue Date: 2016-10-13 14:27:48 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 為了保護手機上的隱私資料,目前已存在數個識別機制,如:PIN碼、密碼解鎖,及生物特徵方式的識別機制。然而這些識別方法於便利性及安全性上人仍有所不足。非侵入式識別機制由於僅須收集使用者行為即能進行識別,故能彌補上述識別方式之不便利性。目前已存有數個非侵入式識別機制,但並沒有考慮訓練樣本的收集時間過長的問題。而以門檻為停止條件的主動學習方法雖能減少訓練樣本量,卻會造成錯誤率上升。
      於本研究中,我們提出一個優化後的主動學習方法,使其更為有效地收集訓練資料。支持向量機器被用來分析少量的訓練資料。本研究提出兩項主要的方法,其一為使用優化後的停止條件,藉以減少資料量。其二則為使用改善的模型分析方法決定訓練資料之來源,藉以保持其原有的錯誤率。
      於實驗後,我們發現本研究所提出方法相比原有主動學習方法有較好的效果。訓練資料收集時間可從17分鐘降至10分鐘,約減少至原所需時間量的41%,並保持相同的錯誤率。

    關鍵字:非侵入式識別,使用者識別,主動學習方法,支持向量機器
    ;In order to protect the data in the smartphone, there is some protection mechanism that has been used. The current authentication uses PIN, password, and biometric-based method. These authentication methods are not sufficient due to convenience and security issue. Non-Intrusive authentication is more comfortable because it just collects user’s behavior to authenticate the user to the smartphone. Several non-intrusive authentication mechanisms were proposed but they do not care about the training sample that has a long data collection time. The Threshold-based active learning has proposed the method that cut down the training data but it makes the error rate increase.
    In this research, we propose a method to collect data more efficient using Optimized Active Learning. The Support Vector Machine (SVM) used to identify the effect of some small amount of training data. This proposed system has two main functionalities. First, to cut down the training data using optimized stop rule. Second, maintain the Error Rate using modified model analysis to determine the training data that fit for each user.
    Finally, after we done the experiment, we conclude that our proposed system is better than Threshold-based Active Learning. The time required to collect the data can cut down to 41% from 17 to 10 minutes with the same Error Rate.

    Keywords: non-intrusive authentication, user authentication, active learning, support vector machine
    Appears in Collections:[資訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML156View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明