English  |  正體中文  |  简体中文  |  Items with full text/Total items : 66984/66984 (100%)
Visitors : 22675106      Online Users : 264
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72324


    Title: 加減法集合的估計以及其運用;A study of sum-differencesets and its applications
    Authors: 洪昕嵐;Hung,Hsin-Lan
    Contributors: 數學系
    Keywords: 加減法集合的估計;加減法集合的運用
    Date: 2016-06-15
    Issue Date: 2016-10-13 14:47:33 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在許多經典的加減法數論問題都圍繞在特定的集合上作研究,但在本篇論文裡,我們的重點不是這些類型的問題。相反,我們由一個加法群Z選出非空有限的一般集合A,B,利用一些組合的方法和代數的運算去估計它們的加減法集合,並證明在給定的條件下,集合A可以被集合B的平移所覆蓋。最後我們可將這些基礎數論的方法,運用在討論等差數列集合。;Many classical problems in additive number theory revolve around the study of sum sets for specific sets, in this text, we shall not focus on these types of problems. Instead, we shall focus for more general sets A,B, which are finite and non-empty subsets of an additive group such as Z. We will develop the more elementary theory of sum set estimates. These estimates are obtained by combinatorial considerations, and rely on arithmetic facts. And we prove the lemma which gives conditions under which one set A can be efficiently covered by translates of another set B. In the end, we can use these number- theoretic methods to discuss an arithmetic progression.
    Appears in Collections:[數學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML243View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明