中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72336
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%)
Visitors : 23195016      Online Users : 287
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72336


    Title: 廣義黎曼解決方案等溫可壓縮歐拉 - 泊松方程流球對稱空間時代;Generalized Riemann Solutions to Compressible Euler-Poisson Equations of Isothermal Flows in Spherically Symmetric Space-times
    Authors: 馬葵娜;Quita,Reyna Marsya
    Contributors: 數學系
    Keywords: 可壓縮歐拉 - 泊松方程;初始邊值問題;弱解;廣義黎曼問題;寬鬆的方法;線性化;Compressible Euler-Poisson equations;initial-boundary value problem;weak solutions;generalized Riemann problem;Lax method;linearization
    Date: 2016-08-22
    Issue Date: 2016-10-13 14:48:19 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在本文中,我們考慮球對稱空間時間可壓縮歐拉方程泊松。方程,代表品質和重力吸引潛在的物理量動量守恆,可以寫成一個混合型的3x3部分迪系統的差動或平衡法與全球源2X2雙曲系統。我們展示的方程為品質守恆,歐拉 - 泊松下方程可以轉化為平衡定律與本地源純3x3的雙曲系統。歐拉 - 泊松方程黎曼問題,這是在初始邊值問題廣義Glimm方案的構建塊的通用解決方案,提供不嚴的類型相關聯的同質守恆定律弱解和擾動項解決了疊加通過與些線性雙曲系統與這種鬆懈的解決方案。最後,我們提供LAX-Wendroff無限迪方法和辛普森的數值積分為某些初始邊值問題全球資源。提供了幾種類型的初始和邊界資料的數值類比。;In this thesis, we consider the compressible
    Euler-Poisson equations in spherically symmetric space-times. The
    equations, which represent the conservation of mass and momentum
    of physical quantity with attracting gravity potential, can be
    written as a mixed-type $3\times 3$ partial differential systems
    or an $2\times 2$ hyperbolic systems of balance laws with $global$
    source. We show under the equation for the conservation of mass,
    Euler-Poisson equations can be transformed into a pure $3\times 3$
    hyperbolic system of balance laws with $local$ source. The
    generalized solutions to the Riemann problem of Euler-Poisson
    equations, which is the building block of generalized Glimm scheme
    for the initial-boundary value problem, are provided as the
    superposition of Lax′s type weak solutions of associated
    homogeneous conservation laws and the perturbation terms solved by
    some linearized hyperbolic system with coefficients related to
    such Lax′s solution. Finally, we provide Lax-Wendroff finite
    difference method and Simpson′s numerical integration to the
    global sources for some initial-boundary value problems. Numerical
    simulations are provided for several types of initial and boundary
    data.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML345View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明