English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70548/70548 (100%) Visitors : 23195016      Online Users : 287
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
 Scope All of NCUIR College of Science All rights reserved    Graduate Institute of Mathematics       --Electronic Thesis & Dissertation Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCUIR > College of Science All rights reserved > Graduate Institute of Mathematics > Electronic Thesis & Dissertation >  Item 987654321/72336

 Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72336

 Title: 廣義黎曼解決方案等溫可壓縮歐拉 - 泊松方程流球對稱空間時代;Generalized Riemann Solutions to Compressible Euler-Poisson Equations of Isothermal Flows in Spherically Symmetric Space-times Authors: 馬葵娜;Quita,Reyna Marsya Contributors: 數學系 Keywords: 可壓縮歐拉 - 泊松方程;初始邊值問題;弱解;廣義黎曼問題;寬鬆的方法;線性化;Compressible Euler-Poisson equations;initial-boundary value problem;weak solutions;generalized Riemann problem;Lax method;linearization Date: 2016-08-22 Issue Date: 2016-10-13 14:48:19 (UTC+8) Publisher: 國立中央大學 Abstract: 在本文中，我們考慮球對稱空間時間可壓縮歐拉方程泊松。方程，代表品質和重力吸引潛在的物理量動量守恆，可以寫成一個混合型的3x3部分迪系統的差動或平衡法與全球源2X2雙曲系統。我們展示的方程為品質守恆，歐拉 - 泊松下方程可以轉化為平衡定律與本地源純3x3的雙曲系統。歐拉 - 泊松方程黎曼問題，這是在初始邊值問題廣義Glimm方案的構建塊的通用解決方案，提供不嚴的類型相關聯的同質守恆定律弱解和擾動項解決了疊加通過與些線性雙曲系統與這種鬆懈的解決方案。最後，我們提供LAX-Wendroff無限迪方法和辛普森的數值積分為某些初始邊值問題全球資源。提供了幾種類型的初始和邊界資料的數值類比。;In this thesis, we consider the compressibleEuler-Poisson equations in spherically symmetric space-times. Theequations, which represent the conservation of mass and momentumof physical quantity with attracting gravity potential, can bewritten as a mixed-type $3\times 3$ partial differential systemsor an $2\times 2$ hyperbolic systems of balance laws with $global$source. We show under the equation for the conservation of mass,Euler-Poisson equations can be transformed into a pure $3\times 3$hyperbolic system of balance laws with $local$ source. Thegeneralized solutions to the Riemann problem of Euler-Poissonequations, which is the building block of generalized Glimm schemefor the initial-boundary value problem, are provided as thesuperposition of Lax′s type weak solutions of associatedhomogeneous conservation laws and the perturbation terms solved bysome linearized hyperbolic system with coefficients related tosuch Lax′s solution. Finally, we provide Lax-Wendroff finitedifference method and Simpson′s numerical integration to theglobal sources for some initial-boundary value problems. Numericalsimulations are provided for several types of initial and boundarydata. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File Description SizeFormat
index.html0KbHTML345View/Open