晶圓鍵合技術的優勢,在於可以將不同元件在高品質接合介面下結合在一起,具有相當高的便利性與整合性。然而,不同材料之間存在熱膨脹係數差異,會在高溫下產生熱應力,造成晶圓分離,甚至發生破裂。本研究以矽晶片與砷化鎵晶片進行直接晶圓鍵合,探討如何減少熱應力對鍵合晶圓的影響。本實驗分為兩個部分:第一部分為探討電漿活化晶圓表面之差異,得到最佳電漿參數;第二部分為探討晶圓以對稱式鍵合與非對稱式鍵合之差異。實驗結果發現,晶圓經過電漿活化表面後,能有效提升鍵合能,並能在200℃成功鍵合。另外,對稱式晶圓鍵合能有效抵消熱應力,在加熱至350℃時,晶圓仍不會破裂。;Wafer Bonding Techniques has an advantage that can combine wafer with different materials with great bonding interface. It provides convenience and integration for high-tech industry. However, it will exist thermal expansion mismatch between different materials, great thermal stress may cause sample debond even crack after annealing. In this work, we developed wafer bonding techniques to bond Si and GaAs wafers. First, we use ultraviolet/ozone (UVO) plasma to modify the surface of wafers. Second, we compare the wafers in symmetrical bonded structure with asymmetric bonded structure. In result, wafers could bond together in 200℃ after surface activation. Besides, the wafers in symmetrical bonded structure could effectively counteract heat stress even heat to 350 ℃, and it is still not crack.