English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75369/75369 (100%) Visitors : 25465003      Online Users : 332
 Scope All of NCUIR 工學院    機械工程研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 工學院 > 機械工程研究所 > 博碩士論文 >  Item 987654321/72416

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/72416`

 Title: 模糊系統H∞靜態輸出回授控制器設計─齊次多項式尤拉法;H∞ Static Output Feedback Controller Design of Fuzzy Systems Via Homogeneous Euler′s Method Authors: 劉鎔維;Liu,Jung-Wei Contributors: 機械工程學系 Keywords: 非二次穩定;平方和;Takagi-Sugeno模糊系統;尤拉齊次多項式定理;H∞狀態回授控制;H∞靜態輸出回授控制;non-quadratic stability;sum of squares;T-S fuzzy systems;Euler′s Theorem for Homogeneous Function;H∞ state feedback control;H∞ static output feedback control Date: 2016-07-28 Issue Date: 2016-10-13 14:53:52 (UTC+8) Publisher: 國立中央大學 Abstract: 本論文主要研究連續模糊系統之靜態輸出回授控制器設計，使用非二次李亞普諾夫函數(non-quadratic Lyapunov function) 及其對時間的變化率做為穩定的條件, 並滿足H1 性能指標。本論文分為兩個步驟設計靜態輸出回授控制器，步驟一: 求得狀態回授增益，使用二次李亞普諾夫函數(quadratic Lyapunov function) ，步驟二: 求解靜態輸出回授增益, 使用非二次李亞普諾夫函數(non-quadratic Lyapunov function)，其中以尤拉齊次多項式定理建立非二次李亞普諾夫函數(non-quadratic Lyapunov function)，其形式為V (x) = x′P(x)x = 1/(g(g-1))x′∇xxV (x)x。電腦模擬方面以平方和方法(Sum-of-Squares) 來檢驗模糊系統的穩定條件，並設計出狀態回授控制器以及靜態輸出回授控制器。;The main contribution in this thesis is static output feedback controllerdesign of H1 continuous fuzzy system. And we can solve the inequalities derived from non-quadratic Lyapunov function and its time gradient. It’s a two-step procedure for solving output feedback control gain, step 1: solve for state feedback gain (for common P theorem), step 2: solve for static output feedback gain (for homogeneous polynomial P(x) theorem). A non-quadratic Lyapunov function derived fromEuler’s homogeneous polynomial theorem has following formV (x) = x′P(x)x = 1/(g(g-1))x′∇xxV (x)x。In numerical simulation, we solve for state feedback gain first and then solve for static output feedback gain with sum-of-squares approach. Appears in Collections: [機械工程研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML349View/Open