English  |  正體中文  |  简体中文  |  Items with full text/Total items : 74010/74010 (100%)
Visitors : 24678032      Online Users : 241
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72510

    Title: 以游離酵素促進土壤中氯酚化合物偶合反應之研究;Oxidative coupling of chlorophenols catalyzed by isolated enzymes
    Authors: 陳姿蒨;Chen,Zih-Chien
    Contributors: 環境工程研究所
    Keywords: Peroxidase;Laccase;氯酚化合物;催化偶合;Peroxidase;Laccase;chlorophenols;oxidative-coupling
    Date: 2016-07-28
    Issue Date: 2016-10-13 15:25:34 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 氯酚化合物具頑抗、難分解之特性,常見處理方式有物理、化學、生物等,利用酵素去除氯酚被認為對環境較為友善。本研究藉由添加酵素至受氯酚污染土壤中,將小分子具毒性之氯酚化合物偶合成分子量大且特性穩定之產物。選取市售Peroxidase及Laccase分別與氯酚於水溶液及土壤中進行催化偶合反應,探討酵素活性、外在環境因子與反應時間對氯酚化合物去除之影響,並鑑定偶合產物及其相對產量。
    ;Chlorophenols (CPs) pollution of the soil has become a major concern. The pollution of soil has been treated using physical and chemical processes that have proven to be much more expensive. By changing the traditional methodology, biodegradation has been used as a new methodology in which enzymes are used (peroxidase and laccase) to promote oxidative-coupling reaction between recalcitrant organic pollutants (e.g. 2,4-DCP, 2,4,6-TCP, 2,3,4,5-TeCP, PCP) and soil organic matter (SOM), which produce stable incorporated polymers.
    In this study, the soils from Shamao Mountain, Changhua topsoil, Linkou and Taichung were collected and studied. The soil organic matter (SOMs) was determined. The SOMs and reaction time will affect enzyme activity in the environment. 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and catalyzing in aqueous medium are the optimizations to find the best activity reaction conditions with enzyme. Dissociated enzymes on the oxidative-coupling reaction in the difference phase (water and soil) will be discussed. The presence of microorganisms and organic matter in the soil as a coupling product , can promote the coupling reaction. The chlorine monomer (CPs in the soil) can be transfered into dimers, trimers of macromolecular products, which are stable incorporated polymer.When the content of organic matter is higher, the residual concentration of chlorophenols are also higher. Additionally, the moisture(%) of soil favors for oxidative-coupling reaction, and the effect of removal of chlorophenol is as follows; 100%>60%>30%. Relative quantitiy of coupling products is different in sterilization and unsterilization. When samples 2,4-DCP and 2,4,6-TCP of Taichung.; Shamao Mountain are catalyzed by laccase, their products which molecular weight were the same (339.1m/z). The oxidative-coupling reaction in soil is complicated so the trends can’t be correlated. Taking advantage of enough activity, enzyme can reduce chlorophenols and produce lots of coupling products in the same time. The effect of catalysts to chlorophenols is observed as that peroxidase showed better activity than laccase. Moerover, if numbers of chlorine in chlorophenols is higher, it will be more difficulty to remove.
    Appears in Collections:[環境工程研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明