食材在高溫烹煮作業程序中因為食材與食用油品之氧化作用產生油煙(cooking oil fumes, COFs)。COFs中之揮發性有機物(volatile organic compounds, VOCs)包含烯類、醛類、酮類、醇類及羧酸等化合物。COFs中VOCs對人體影響主要為引發油煙綜合徵如咽喉炎、氣管炎、肺癌及肺炎等。傳統VOCs處理技術因為體積過大、設置及維護成本過高等缺點而無法應用於COFs污染防制。本研究之研究目的為發展奈米晶相Fe(OH)3催化臭氧反應程序有效去除COFs中VOCs之方法。本研究假設COFs中VOCs特性成份、OH radical礦化VOCs之反應途徑以及通過臭氧與OH radical氫氧化鐵表面之轉化效率以建立COFs中VOCs礦化反應動力模式。並且利用此模式預測Fe(OH)3 之OH radical轉化率及VOCs礦化反應之臭氧劑量。經過實驗驗證後,VOCs of COFs成分主要包含烯類、醛類、酮類、醇類、羧酸及,OH radical礦化VOCs之反應途徑隨著OH radical數量而變化,足量OH radical礦化VOCs之反應途徑為無方向性及選擇性之直接分解氧化。隨著所製備觸媒表面羥基數量增加, OH radical 轉化率與製備之氧化鐵晶體中所含之羥基團數量成正比。本研究也發展殼-核型態之二氧化鈦-聚苯胺複合奈米材料(core-shell TiO2-Polyaniline hybrid composite, TP composite)以提高純二氧化鈦奈米粒子之光催化活性。聚苯胺殼層有效吸收可見光和近紅外光,以提升純二氧化鈦奈米粒子光活性區域Fe(OH)3催化臭氧反應技術明顯優於TP composite 光催化反應技術。;COFs are emitted from oxidations throughout high-temperature cooking of food materials. VOCs of COFs contain aldehyde, acetone and ester, which cause fumes syndrome. Reported technologies for VOCs removal cannot be used because of their large size and high capital and maintenance costs. The purpose of this study is to develop a nanostalline Fe(OH)3 catalytic ozonation for the removal of VOCs of COFs. We setup the assumptions of the characteristic compound of VOCs of COFs, the pathway of VOCs mineralization with OH radicals and the conversion efficiency of OH radical on the iron oxide hydrated surface. We applied the assumptions to build a reaction kinetic model of VOCs of COFs. This kinetic model theoretically determined the conversion efficiency of OH radical from Fe(OH)3 catalytic ozonation and ozone consumed throughout VOCs mineralization . After experimental verifications, the VOCs of COFs mainly includes alcohols, aldehydes, acetones and esters, carboxylic acids and aromatic compounds. The conversion efficiency of OH radical on the iron oxide hydrated surface is proportional to the OH group concentration of the prepared iron oxide. The reaction pathway of VOCs mineralization was determined with the amount of OH radical. Sufficient amount OH radicals decompose VOCs through a pathway of unselective and direct oxidation. In addition, we developed TP composite to improve the photocatalytic activity of pure TiO2 nanoparticle. The polyaniline shell significantly increases the photoactive region of pure TiO2 nanoparticles through the absorption of visible and near-IR radiation. In conclusion, Fe(OH)3 catalytic ozonation is obviously better than TP photocatalytic oxidation.