English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69937/69937 (100%)
Visitors : 23069331      Online Users : 695
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72628


    Title: 研究非線性功率放大器的線性化預失真技術;Study On Linearization Methods For Predistortion Of Nonlinear Power Amplifiers
    Authors: 羅彥翔;Lo, Yen-Hsiang
    Contributors: 通訊工程學系
    Keywords: 正交分頻多工;直接學習架構;間接學習架構;預失真技術;內爾德 - 米德;最大期望值;高斯-牛頓;OFDM;DLA;ILA;predistortion;Nelder-Mead;expectation maximization;Gaussian-Newton
    Date: 2016-11-01
    Issue Date: 2017-01-23 17:08:11 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 由於正交分頻多工(Orthogonal Frequency Division Multiplexing, OFDM)訊號具有較高的峰值對均值功率比(Peak-to-Average Power Ratio, PAPR),容易受到功率放大器非線性的影響,而產生訊號的失真,導致系統效能降低。在過去的文獻中,使用預失真技術用於補償非線性功率放大器造成的失真為主要的研究方向。在本篇論文以有記憶性多項式模型當作功率放大器,並利用有記憶性多項式作為預失真器的模型,並利用有記憶性多項式作為預失真器的模型,提出NM單純型搜索法 (Nelder and Mead Simplex Search Method)直接搜索預失真參數,以及使用高斯-牛頓線性化法(Gaussian-Newton method)推導出有記憶性多項式模型下的演算法,最後提出最大期望値法(Expectation Maximization)結合NM單純型搜索法,並且分別利用直接學習架構(Direct Learning Architecture,DLA)以及間接學習架構(Indirect Learning Architecture,ILA)找到預失真的參數,最後本篇論文比較補償非線性功率放大器演算法的效率。
    ;The characteristic of high peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) signals is well known to seriously degrade system performance. The predistortion (PD) technique for compensating the nonlinear power amplifiers (PAs) has become a main approach in the literature. In this paper, we consider a memory polynomial model for the PAs. Taking into account the direct learning and indirect learning structures for the PD, we study some algorithms for the PD coefficients, including the expectation maximum (EM) algorithm, Gaussian-Newton linearization method, and the Nelder-Mead simplex search method. In this thesis, the algorithm efficiency and computational complexity are compared by applying those methods for the PA compensation problem.
    Appears in Collections:[通訊工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML249View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明