中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72659
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78818/78818 (100%)
Visitors : 34652698      Online Users : 601
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72659


    Title: 即時影像導引局部電化學沉積系統製作立 體微結構物之研究;Research on Real-time Image Processing Guided Micro-Anode Electroplating for fabrication of three-dimensional microstructure
    Authors: 邱永傑;Ciou, Yong-Jie
    Contributors: 機械工程學系
    Keywords: 局部電化學沉積;即時影像處理;微電場模擬;五軸運動控制;Localized electrochemical deposition (LECD);Real-time image processing;electro field simulation;five-axis machine
    Date: 2016-10-31
    Issue Date: 2017-01-23 17:12:47 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 微米級立體結構物的應用,在近幾年內蓬勃且廣泛發展相關的應用產品,例如:3D IC、生物檢測領域、醫療器材、感測器與微型陀螺儀等各種重要的領域。在微米級立體結構物的相關技術中,局部電化學沉積能夠輕易地製作高深寬比之結構物,並使用多種不同材質製作微結構物。目前曾被應用於氣體感測器等應用領域。
    本研究延續即時影像導引局部電化學電鍍的概念,發展一套局部電化學與影像導引控制系統,運用此系統製作出表面更平滑、結構紮實、形貌可控且更高複雜性的二維與三微結構物,並利用電化學模擬電場分布探討實驗結果,以此建立模擬數據分析方法,以利微電鍍製程後續之相關應用。
    本研究主要有三個研究方向,首先是探討應用即時影像於製作多維度微結構物之可行性,建立2 D微結構形貌控制法;研究結果顯示使用兩極相對位置控制法能使2D微結構物之沉積角度在±51.9˚之間。並且進一步探討製作參數與沉積角度之關聯性,如工作電壓、陰極面積、陽極形貌等參數,並將實驗結果比對模擬結果,建立沉積角度之模擬預測方法。
    第二個研究方向為沉積出複雜度更高之微結構物,研究目標為增進2D微結構物之傾斜角度與降低3D為螺旋之螺距,研究方法是利用五軸移動平台、不同之陽極形貌等進一步改良局部電化學沉積系統。關於增進2D微結構物之傾斜角度的研究中,非對稱式尖頭陽極之實驗沉積結果證實,此種陽極能增進最小沉積角度,微結構物之沉積角度範圍為12˚ ~ -107.9˚,而此微陽極之特性與模擬推測結果相符。基於此類陽極,本研究建立五軸即時影像間距控制系統,以此製作之3D微結構物證實,控制系統能進一步製作結構更複雜之沉積物:低螺旋傾角之螺旋彈簧與倒三角架。
    第三個研究方向是結合電化學模擬分析與影像監控之實驗結果,經由比對實驗及模擬結果進行,能進一步探討局部電化學沉積理論與特性。由於相關的研究顯示,使用非對稱式尖頭陽極所製作之螺旋曲線,螺旋外貌會有線徑漸粗的狀況,而非對稱平頭陽極則無此現象。因此我們由電場分布模擬結果探討差異性,我們認為主要有兩個因素,首先為尖頭電極模擬結果中,第一峰值差距較大且影響區域較廣;第二個因素為模擬結果中的第二峰值強度差異。
    ;The localized electrochemical deposition (LECD) process has been used to fabricate 3D microproducts. The purpose of this research is to develop a LECD process with a real-time 3D image feedback distance control system to improve the quality and conformational design complexity of 3D microproducts.
    In 2D microstructure, the deposition direction of the microstructures is found to be closely related to the relative orientations and positions of the micro-anode and the microstructure stip. By controlling the anode position and orientation, microstructures with different geometries can be fabricated and their properties can be improved.
    We also discussed the relationship between the deposition orientations of 2D microstructures and working voltage by experiment and electro field strength simulation. According to the experimental results, the deposition orientations don’t be significant changed when the experiments was applied with different working voltage in same microelectrode-structure distance.
    For predicting the deposition orientation of 2D microstructures, we proposed three methods to analyze the distribution of electro field strength by using characteristic directions calculated from the maximum electric field strength, weighted average, and mid-point (over a certain threshold value) methods. Compared with the experimental results, the mid-point method with a 50% threshold value provides the best prediction for the deposition orientation.
    For fabricated complex 3D microproducts, analyses of microproducts show that the main factor is the deposition direction angle that can be controlled in a 2D fabrication method. The deposition direction angle was the angle between the normal direction of the substrate surface and deposition direction. The normal direction of the substrate surface was determined 0"°" .We investigate two methods to improve the deposition direction angle in this study. The first method makes use of a new type of micro anode with asymmetric tip. By using this asymmetric micro anode, the deposition direction angle is found to range between −12.0° and 107.9°. This range is only to display the performance of the anode that proposed in this study. The second method is to redesign the moving mechanism and increase actuators and axes. By employing these two methods, we demonstrate high quality fabrication of two types of microstructures: helical springs with low pitch angle and inverted tripods.
    Appears in Collections:[Graduate Institute of Mechanical Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML374View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明