在自然界中的液體,由於其低黏滯度的緣故,呈現出易於變形的行為。然而,在近幾年中,有越來越多科學家發現,相較於大尺度的生活,常溫下的液體在極微小縫隙中(厚度約次奈米至數奈米,相當於十個分子層),卻是堅硬,難以切變。他們或透過實驗,或透過電腦模擬技術將不同厚度的超薄液體膜的巨觀特性和表面力測量出。但是,卻鮮有探究其微觀下最根本的道理的。 故在強耦合微粒電漿系統中,我們製作出一由數百顆被充有負電的微粒子所組成的二維長形庫侖流體,並輔以光學顯微鏡,直接觀測超薄庫侖流體在不同厚度下,其粒子的微觀運動,以研究其微觀尺度下,液體似固化行為的源由。 最後,我們透過一些統計的工具如橫切密度分佈(量測在橫切的位置上,粒子的平均密度),鍵結方向序的整齊參數(將每個微結構的整齊度及方向轉換成向量的長度及相位),鍵結方向序的時空關連函數(量測微結構在時間及空間上的相似度)等,深入探討超薄庫侖流體的特性及其在邊界影響下所展現的時空尺度律,並與之前的巨觀研究比較。 To our knowledge, liquid nature is deformable with low shear modulus. However, in recent years, liquid confined in a molecular-scale gap is found exhibiting hard and high viscosity. In experiments or numerical simulations, the surface forces (the normal stress and the shear stress) of ultra thin liquid are measured. The microscopic origin and the experimental evidence are less explored. In our strongly coupled dusty plasma system, the elongated 2D Coulomb liquids consisting of negatively charged dust particles are generated. The microscopic particle motions in different gap width are directly monitored through optical video microscopy. The details of the confinement induced solid-like transition at different gap sizes are then observed. Furthermore, the interesting spatial and temporal scaling under the influence of confinement effect are discussed through measuring the system transverse density distribution, the bond-orientational order and the bond-orientational spatial and temporal correlations.