English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70588/70588 (100%)
Visitors : 23121130      Online Users : 503
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7279

    Title: 肥皂膜上的能量耗散;Energy dissipation in soap film
    Authors: 王御蓁;Yu-Chen Wang
    Contributors: 物理研究所
    Keywords: 空氣阻力;肥皂膜;air drag;soap film
    Date: 2002-07-04
    Issue Date: 2009-09-22 10:54:08 (UTC+8)
    Publisher: 國立中央大學圖書館
    Abstract: 摘要 受力於電磁場下的肥皂膜,其能量主要耗散於與空氣 分子的作用以及流體內部的黏滯力。此論文說明如何 透過實驗找出空氣阻力與黏滯力之間的比值。驅動一 穩定電流通過磁場下的薄膜,使薄膜上的流場達到穩 定狀態。利用追蹤薄膜上的微粒,測得穩定流場的旋 轉週期。再以不同頻率垂直震盪薄膜,使之達到穩定 駐波,並取得此時的共振頻率以供推算薄膜厚度。從 膜的厚度與旋賺週期的關係可知越厚的膜,阻力係數 越大,使得旋轉週期越長。由於空氣阻力始終存在, 若膜的厚度趨於零,則旋轉週期必定是正值。我們由 此一關係可得到空氣阻力與黏滯力的比值並由每一張 膜的厚度值所決定。 Abstract We study energy dissipation rates on soap lms driven by electromagnetic forces. The relative amplitude between air- uid friction and uid viscosity has been determined. The ow eld in the soap lm is maintained in steady state by driven a steady current across the soap lm. Therefore, the energy dissipation rates must exactly balance the energy injection rate. In experimental process, rotational periods are obtained by particle tracking, and the thickness of the soap lm are measured by resonant frequency. These results are used to calculated the e ect of air friction and uid's viscosity. When the lm is thicker, the uid's drag is greater, leading to longer rotating period. When the lm thickness tends to zero, the rotating period must be a positive value, due to the air friction. As a result, we can obtain the ratio of the two energy dissipation rates. This ratio suggests that the e ect of air friction is greater as the lm is thinner. However, in conclusion our results show that the most part of energy dissipation is due to the uid's viscosity.
    Appears in Collections:[物理研究所] 博碩士論文

    Files in This Item:

    File SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明