English  |  正體中文  |  简体中文  |  Items with full text/Total items : 72887/72887 (100%)
Visitors : 23121926      Online Users : 390
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72868

    Title: 金奈米粒子包覆於UiO-66之有機相與水相合成的探討及中-微孔孔洞分級材料的研究與應用
    Authors: 李育修;Li, Yu-Hsiu
    Contributors: 化學學系
    Keywords: 金奈米粒子;金屬有機骨架材料;UiO-66;醇水分離;Gold nano particle;Metal-organic Frameworks;UiO-66;Ethanol/Water Separation
    Date: 2017-01-19
    Issue Date: 2017-05-05 17:10:36 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本篇論文分成兩部分:
    ;This thesis is sorted by two parts as below:
    Part I: Single encapsulation of gold nanoparticle into robust Zr-based metal-organic framework:Evolution of the alignments toward a single Au nanoparticle embedded into an individual UiO-66 nanocrystal: The realization of metal NPs for specific catalytic application is an intensively studied field where numerous efforts are investigated in modulating their active site via the incorporation of the other materials. Additionally, as small sized NPs possess high surface energy, agglomeration during catalytic reaction is presented. Therefore, materials incorporated with metal NPs should either prevent the agglomeration or provide the specific mechanism to tune their catalytic nature. In this study, Zr-based metal-organic frameworks, UiO-66, with microposity and milder synthetic condition is here investigated as the incorporating compositions while the gold NPs is selected as the prototype. By controlling the crystallization of UiO-66 nanocrystal under organic solution, a single particle of UiO-66 nanocrystal is able to encapsulate only one gold NP inside, Au@UiO-66. Notably, the metal precursor of UiO-66 in this study is selected as ZrOCl2 rather than ZrCl4 which often lead to the erosion of gold NPs. Furthermore, to tune the alignments of the Au@UiO-66, the organic solution in previous experiment is switch to the water-based system which is able provide the polarity to modulate the surfactant CTAB and CTAC for the further advanced alignments of Au@UiO-66. Consequently, the resulting chemically robust Au@UiO-66 materials is expected to provide more scopes to tune the catalytic capability of metal NPs as well as be the prototype to establish other Metal NPs@MOFs.

    Part ll: Synthesis of Hierarchical Micro/Mesoporous Structure: Zr-based Metal-Organic Framework on SBA-15 for Enhanced Pervaporation of Water/Ethanol Mixtures: A new type of hierarchical micro/mesoporous structure (UiO-66@CAR-10) was achieved by heteroepitaxial growth of Zr-metal organic framework, UiO-66, on the functionalized silica mesoporous material, CAR-10. The synthesized hierarchical micro/mesoporous UiO-66@CAR-10 structure was examined by various spectroscopic techniques. In addition, the pervaporation measurements of the liquid water/ethanol mixture show that UiO-66@CAR-10/PVA (poly(vinylalcohol) mixed-matrix membrane exhibits enhanced performance both on the permeability and separation factor. Compared to the previous reports, this study provides a simple approach for synthesizing novel hierarchical porous composites exhibiting both advantages of mesoporous materials and microporous materials, which is expected to be useful for gas adsorption, separation, and catalysis.
    Appears in Collections:[化學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明