中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72941
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41638996      Online Users : 1750
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72941


    Title: Real-Time Measurement of Vibrio alginolyticus Polar Flagellar Growth
    Authors: 陳美廷;Chen, Mei-Ting
    Contributors: 物理學系
    Keywords: 鞭毛;溶藻弧菌;flagella;sheath;vibrio alginolyticus;flagellin
    Date: 2017-01-23
    Issue Date: 2017-05-05 17:19:15 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 細菌鞭毛是根生長於細菌體外的細長管子,此管子會形成螺旋推進器用以驅
    動細菌運動。鞭毛的形成是一個自我組成的過程,鞭毛蛋白從管子的基部通過管
    子中心被送到遠端,當它一到達頂端便會立即成為鞭毛的一部份,進而使整根鞭
    毛長度增加。
    為了研究這個奈米尺度的自我組成系統,我們開發了一種快速標記鞭毛的方
    法,我們應用具有高空間和時間解析度的活體螢光影像直接觀測溶藻弧菌鞭毛的
    生長。與先前的研究相比,我們的結論顯示溶藻弧菌的鞭毛成長速度與長度有高
    度相關性:鞭毛長度短於1500 奈米,鞭毛以每分鐘50 奈米的速度等速成長,隨
    著鞭毛長度增長,其成長速度會變慢,首先急劇下降接著趨於平緩,最後,當鞭
    毛長度為7500 奈米,鞭毛的成長速度為每分鐘9 奈米。
    我們建立了一個名為injection-diffusion 的模型來解釋我們的結果,由於鞭毛蛋白在管子內短距離的擴散速度很快,所以短鞭毛的鞭毛生長速度主要是由基部
    鞭毛蛋白輸送進管內的速率所決定;當鞭毛長度增長,鞭毛蛋白的擴散變為有速
    度限制的,部分的單體會塞在管內,阻礙新的鞭毛蛋白進入管內,鞭毛的生長速
    度因而劇烈地減慢。
    我們的結果提供了細菌鞭毛的動態生長過程一個新的觀點。;Bacterial flagella are thin external tubular filaments that form helical propellers to drive swimming in bacteria. Forming flagella is a self-assembly process when partially unfolded flagellum monomers, flagellins, are pumped out and transported through the central channel from its base to the distal end. The secretion apparatus contains six membrane proteins (FlhA, FlhB, FliO, FliP, FliQ and FliR) and three
    soluble proteins (FliH, FliI, and FliJ) shareing the same structure with type III secretion system which is used solely for secretion. As flagellin reaches the growing
    end of flagellar filament, it crystallizes immediately and becomes the new extending part of the filament. In order to study this nanometer-size self-assembled system, we have developed a fast flagellar filament labeling assay. We applied in vivo fluorescent imaging to monitor directly the growth of Vibrio alginolyticus polar flagella with high
    spatial and temporal resolution. In contrast to previous reports, we revealed that the flagellar growth rate of Vibrio alginolyticus is highly length-dependent. When
    flagellar length is shorter than 1500 nm, the flagellum growth is at a constant rate (50 nm/min). As the flagellum grows longer, the growth rate decays. It drops sharply at
    first and tends to ease in the long flagella region. It decreases to 9 nm/min when flagellar length is 7500 nm. We built an injection-diffusion model to explain our results. When the flagellum is short, its growth rate is determined primarily by the loading speed at the filament base, since diffusion of flagellin across the short distance in the channel is fast. When the flagellum grows longer, diffusion of flagellin becomes rate-limiting. It causes some flagellar monomers jammed in the channel.
    III
    Such blockage slows down the loading of new flagellins into the channel. Therefore,the flagellar growth rate drops dramatically. Our results shed new light on the dynamic building process of this complex extracellular structure.
    Appears in Collections:[Graduate Institute of Physics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML298View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明