中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/72943
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78733/78733 (100%)
Visitors : 34465802      Online Users : 961
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/72943


    Title: 銫原子穩頻822奈米二級光鐘;Cesium-stabilized 822-nm secondary optical clock
    Authors: 吳淑蓉;Wu, Shu-Rong
    Contributors: 物理學系
    Keywords: 雷射;二級光鐘;Cesium;secondary optical clock
    Date: 2017-01-24
    Issue Date: 2017-05-05 17:19:17 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 利用822.5 nm穩頻雷射探測銫原子6S-8S躍遷譜線並量測其絕對頻率與線寬。透過電光調制器將雷射頻率鎖在銫原子氣室的交叉線上,藉由改變電光調制的訊號頻率進而改變雷射頻率並得到躍遷譜線。量測一處於高真空環境的銫原子氣室其譜線訊號,得到此氣室躍遷絕對頻率及線寬860 kHz。
      將一玻璃銫原子氣室置於高壓氦氣中,並隨時探測6S-8S躍遷譜線,其線寬增加、躍遷中心頻率藍移。並得到6S-8S躍遷中心頻率偏移量與線寬增加量的比值為0.24。
      與本研究團隊於2012年所量測的10個銫原子譜線相比對,發現其躍遷中心頻率偏移量與線寬增加量的比值與氦氣影響之值相近。本實驗再測量其中兩個銫原子氣室之譜線,其線寬分別增寬185 kHz及228 kHz,躍遷中心頻率分別增加45.3 kHz及46.8 kHz,其躍遷中心頻率偏移量與線寬增加量的比值與氦氣影響之值接近,因此銫原子氣室很有可能由於氦氣滲透玻璃影響躍遷譜線。
    ;Cesium atom 6S-8S hyperfine transition was observed by 822.5 nm frequency-stabilized laser and its absolute frequency and linewidth were determined. The laser frequency is lock to the crossover line of cesium transition by the electro-optic modulator. The laser frequency is changed by changing the frequency of the electro-optic modulation and the relevant fluorescence is obtained. The ultimate transition frequency and linewidth were determined under a high-vacuum (〖10〗^(-10)Torr) system where the residual gas could be constantly pumped out by an ion-pump.
    A cesium glass cell was implemented in 1.75 atm helium gas and the 6S-8S transition line was monitored. The linewidth was increased and the center frequency of transition was blue shifted. The ratio of the center frequency shift with respect to the linewidth broadening of the 6S-8S transition is 0.24.
    The value of “0.24” is the same as what we have concluded in 2012 via the observation of 10 cesium cells. We future observed the variation of spectral linewidth and frequency for two cesium cells, namely, cell #2 and cell #5. We found that, from 2012 to 2016, the frequency and linewidth of cell #2 increased with 45.3 kHz and 185 kHz, respectively. The frequency and linewidth of cell #2 increased with 45.3 kHz and 185 kHz, respectively. The ratios of the center frequency shift to the linewidth broadening are also near 0.24, which was strongly suspected as were caused by similar helium diffusion from atmosphere.
    Appears in Collections:[Graduate Institute of Physics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML358View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明