English  |  正體中文  |  简体中文  |  Items with full text/Total items : 65318/65318 (100%)
Visitors : 21628816      Online Users : 233
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/73868

    Title: CMIP5多模式系集年代際預報實驗對熱帶地區的年際預報能力與偏差校正的探討;A study on the interannual prediction skills and bias correction of CMIP5 multi-model ensemble of decadal prediction experiments
    Authors: 王俊寓;Wang, Chun-Yu
    Contributors: 大氣科學學系
    Keywords: 年代際預報;偏差校正;decadal prediction;bias correction
    Date: 2017-08-24
    Issue Date: 2017-10-27 12:28:01 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究使用第五期耦合模式比較計畫(CMIP5)多模式系集的年代際預報實驗提供的月平均資料來評估在全球熱帶地區(30°S-30°N)的數個變數的年際預報技術。由於氣候系統具有複雜的時空結構而氣候預報的主要目的是預先得知氣候系統隨著時間演進的變化,因此我們嘗試利用氣候系統中的穩定空間分布做為評估多模式系集的預報技術的量度。首先我們對觀測資料進行型態穩定度分析以獲得在時間變動的情況下仍可保持相當穩定的EOF空間分布。然後讓觀測資料與年代預報實驗資料在相同空間分布的基礎上進行時間序列分析。最後再使用線性迴歸與排序修正法對多模式系集預報的結果進行偏差校正。同時,我們也利用上述研究所獲得的穩定空間分布進行EOF模態資料重組來評估所得到的重組資料是否對於熱帶地區的個別網格尺度的預報技術有所幫助。
    ;In this study, we use monthly data from the multi-model ensemble (MME) of Coupled Model Intercomparison Project Phase 5 (CMIP5) decadal prediction experiments to assess interannual prediction skills for several atmospheric and oceanic variables in Tropics (30°S-30°N). First, we applied pattern stability analyses to extract persistent empirical orthogonal functions (EOFs) from observations-based data as reference spatial patterns. By projecting CMIP5 MME predictions to the extracted EOFs, then we compared these associated time series to assess the MME prediction skills. Finally, we applied linear regression and rank histogram to calibrate the associated time series of MME predictions. In the meantime, this study also evaluates the grid-point scale prediction capability in Tropics by EOF reconstructed fields.
    Pattern stability analyses of the observations-based data indicated that at least 4 persistent EOFs can be found in each examined variable field. The first EOF (EOF1) mainly corresponds to the mean state of the given field, while the second EOF and beyond correspond to more and more localized spatial structures. Except for the third EOF (EOF3) of sea surface temperature (SST) field that has close relation to the El Nino Southern Oscillation (ENSO), most of our efforts focused on the study of interannual prediction skill associated with EOF1. Results indicated that, except for near surface air temperature (SAT) and SST fields, most variable fields did not have any interannual prediction skill. Furthermore, the apparent prediction skill that SAT and SST fields possessed may largely come from the warming trend observed in the last half of the 20th century. As for the ENSO related prediction skill, the EOF3 related time series showed certain prediction skill. This skill may be related to the capability of climate models to better synchronize with ENSO evolution through the adoption of yearly initialization procedure. Additionally, the results of the calibrated MME predicted time series showed that both linear regression and rank histogram calibration methods could effectively reduce the prediction errors and the MME uncertainty. Furthermore, the use of EOF reconstruction reduced MME prediction errors on extensive continent and coastal regions.
    Appears in Collections:[大氣物理研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明