中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/73960
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 50993      Online Users : 651
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/73960


    Title: 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池;Design of Cyclopentadithiophene-Bridged Hole Transport Materials for Highly Efficient and Stable Perovskite Solar Cells
    Authors: 陳凱翔;Chen, Kai-Siang
    Contributors: 化學工程與材料工程學系
    Keywords: 電洞傳輸材料;鈣鈦礦;太陽能電池;Hole transport materials;Perovskite;Solar cell
    Date: 2017-07-18
    Issue Date: 2017-10-27 12:56:33 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究主要探討以雙噻吩併環戊二烯為核心的電洞傳輸材料性質,並以此製作出高效率又穩定的鈣鈦礦太陽能電池。雙噻吩併環戊二烯將會連接三苯胺(triphenylamine)或咔唑(carbazole)做為電子予體,同時在中心結構上引入長碳鏈,來探討分子結構的不同對元件效率的影響,而化學結構﹅核心的共軛性對元件光電參數的表現也會在本研究中探討,並且利用分析能階﹅電洞傳導率與光致螢光光譜進一步地分析電洞傳輸材料的電洞傳導能力,並來證明電動傳輸材料核心的共平面性與分子間堆疊的關係。而以電池結構:FTO/緻密TiO2層/TiO2介孔層 /鈣鈦礦/CT3/MoO3/銀電極,元件光電轉換效率可以達到17.34%,而以常見的電洞傳輸材料Spiro-OMeTAD所做的鈣鈦礦太陽能電池其效率為17.61%。最後,以雙噻吩併環戊二烯為核心所合成出來的新穎電洞傳輸材料CT3與CT4和Spiro-OMeTAD所製備之鈣鈦礦太陽能電池在低濕度環境下經過1300小時之後的元件測試仍保持著一定的穩定性,而在相對濕度30%的測試環境下,因為CT3﹅CT4具較疏水性,使得電池有著較低的衰退性,研究結果顯示,CT系列中的CT3與CT4有著比Spiro-OMeTAD更多的應用優勢。;A series of small-molecule-based hole-transporting materials (HTMs) featuring a cyclopentadithiophene (CPDT) as the central core with triphenylamine- and carbazole-based side groups were designed and evaluated for efficient perovskite solar cells (PSCs) applications. The effect of the chemical structure of the HTMs and the photovoltaic performance were studied through investigation of the different combinations of the central π-bridge moieties. In this respect, the optical, electrochemical, energy level and hole mobility are systematically investigated, revealing the significantly influence of the central core planarity and packing structure on their photovoltaic performance. The optimized device based on CT3 exhibited a PCE (power conversion efficiency) of 17.34% with a device architecture of FTO/TiO2 compact layer/TiO2 mesoporous/CH3NH3PbI3/HTM/MoO3/Ag, which was found to be on par with that of a cell fabricated based on state-of-the-art Spiro-OMeTAD (17.61%) as HTM. Moreover, stability assessment showed a similar stability for CPDT-based HTMs as compared with Spiro-OMeTAD over 1300 hours. Besides, device based on CT3 and CT4 in the 30% relative humidity environment showed a better stability than Spiro-OMeTAD, indicating that the devices with CT3 and CT4 have good long-term stability.
    Appears in Collections:[National Central University Department of Chemical & Materials Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML291View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明