近年來,燃料電池已經成為重要的綠色能源之一。燃料電池的陰極觸媒材料用於將氧還原成水,主要成分為商業化白金觸媒。然而商業化白金觸媒的價格極高,因此尋找燃料電池陰極觸媒替代材料成為近年來最熱門的研究方向之一。 我們以嵌段共聚物為基礎,並混合具有高氧還原活性的鈀金屬前驅物與鐵金屬前驅物,製備白金取代陰極觸媒材料。利用顯微影像(AFM、FESEM)、X光繞射光譜以及循環伏安法(CV)和旋轉圓盤電極(RDE)等實驗儀器對材料的形貌、成分以及電化學性質進行分析。根據我們的研究結果,發現在攝氏500度燒結過後的鈀鐵觸媒樣品具有最佳的氧還原活性。我們在飽和氧氣的0.1M 氫氧化鉀溶液中進行氧還原反應,測得的電子轉移數為3.9,電流密度為10.6mA/cm2。另外進行觸媒材料甲醇耐受度實驗以及穩定度測試,皆得到良好結果。證明我們的觸媒材料除了氧還原活性高以外,同時具有甲醇耐受度高以及觸媒穩定度高等優點。 ;In recent years, the fuel cells are considered to be very important green energy devices. Most of the commercial fuel cells are platinum-based electrocatalyst. This kind electrocatalyst has high oxygen reduction reaction (ORR) activity, but they also show many obvious disadvantages like scarcity, high cost and low tolerance toward methanol. To overcome this problem, we fabricate the palladium-iron-based alloy type of electrocatalysts. We developed a method to fabricate this catalysts by preparing poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) block copolymer (BCP) with Na2PbCl4 and FeCl3 metal precursor. Before pyrolysis, we conduct the cross-linked process with UV radiation under nitrogen (UVIN) for 6 hours. The UVIN-treated sample was pyrolyzed in a furnace for 1 hour with argon (Ar) gas to form carbon nanostructures. The morphologies, structure, composition, and elecreocatalytic activities of the material were characterized by atomic force microscope (AFM), field-emission scanning electron microscope (FESEM), cyclic voltammetry (CV) and rotating disk electrode (RDE). We can get high values for both the electron transfer number (n) and kinetic current density (jk). The onset potential for our sample is close to -0.1V. From these experimental results, we find that our palladium-iron-based electrocatalysts have good catalyst activities.