本實驗使用聚苯乙烯(PS)薄膜當作改質層,藉由聚苯乙烯薄膜上的化學反應,改變原始聚苯乙烯薄膜的性質,在製作表面改質薄膜過程上,我們藉由紫外光的照射的環境不同來調整薄膜的表面能,表面能控制在中性條件下,可以得到垂直排列的雙嵌段高分子(PS-b-PMMA)結構的範圍。本實驗和眾多團隊的不同之處為,取代原始的隨機共聚物的改質方法,並探討交聯密度的強度對應雙嵌段高分子結構的有序程度,以及在不同薄膜厚度下,對退火溫度的移動力變化,和其熱穩定性性質的不同,透過不同的儀器來探測介面間的相互影響對結構的變化。 希望能透過此一製程相較簡單、有效率以及材料取得容易的幾個特點來取代隨機共聚物和其他製成繁瑣的表面改質技術,由於改質上僅需要塗佈以及紫外光曝曬的製成,若能應用在放大製程上面規模生產的難度會比其他改質方法低許多,另外可以藉由聚苯乙烯的特性,調控不同的照光強度、照光的持續時間,藉此控制不同交聯程度,透過此一特點改變改質膜的強度。 ;In this study, we demonstrate a novel strategy to control the orientation of microdomains in block copolymer thin films through surface modification by PS thin film. The PS thin film were crosslinked by UV lamp exposure to precisely tune the interfacial interaction between the poly(styrene-b-methyl methacrylate)(PS-b-PMMA) and substrate interface. We are able to obtain nanopattern with vertical hexagonal and lamellae structure. Since the film is made of PS, which is the most general plastics, cumbersome and multiple steps of polymer synthesis are unnecessary, making possible the mass production of surface modification over varied substrates. PS layer after UV lamp treated , produced non preferential condition for upper BCP(PS-b-PMMA) and produced perpendicular oriented cylinders and lamellae, UVIN produce enough strength for crosslinking , UVIA produce oxide layer , both process are necessary to make the neutral condition,