使用溶液製程於有機半導體層具有低成本、能大面積製造及能於可撓性基板製造的優點。除此之外,利用小分子與高分子混摻之半導體層製程呈現了更好的載子傳遞效能。在我們這項研究中,我們嘗試利用原先電性較差的小分子2,5-bis(3,5-diundecyldithieno[3,2-b:2′,3′-d]thiophen-2-yl) thieno[3,2-b]thiophene (DDTTR-TT)與高分子2-methyl-6-(5′-methyl-3,3′-bis(tetradecylthio)-[2,2′-bithiophen]-5-yl)dithieno[3,2-b:2′,3′-d]thiophene (P-DTTSBT)混摻並以溶液之剪切力塗佈法製作半導體層。我們發現在特殊混摻比例下小分子與高分子相分離的狀況會最少並影響了半導體層的表面形貌,混摻半導體層也同時增加了相對於純高分子或純小分子半導體層的電性。原先的純小分子DDTTR-TT之電洞遷移率約為9.0×10-4 cm2V-1s-1,而純高分子P-DTTSBT之電洞遷移率約為6.7×10-2 cm2V-1s-1。而在小分子與高分子於溶液重量比30 %與70 %時能達到電洞遷移率2×10-1 cm2V-1s-1。;Solution processing of organic semiconductors offers great potential for achieving low cost manufacturing of large area and flexible electronics. In addition, organic field effect transistors (OFETs) based on blends of small molecule semiconductors and polymers show promise for high performance organic electronics applications. This study demonstrated the small molecule (DDTTR-TT)/polymer (P-DTTSBT) blending semiconducting layer based on solution shearing method. In this case, the results show that small molecule and polymer have a specific ratio which results in the phase separation and also affects the thin film morphology. The electrical properties are enhanced by DDTTR-TT/P-DTTSBT film. The organic field effect transistor through solution-shearing of the DDTTR-TT displays the hole mobility of 9×10-4 cm2V-1s-1 and the P-DTTSBT displays the hole mobility of 6.7×10-2 cm2V-1s-1; however, the DDTTR-TT/P-DTTSBT blends with a chlorobenzene solvent mixture in 30 % : 70 % ratio displays the highest hole mobility up to 2×10-1 cm2V-1s-1. Therefore, tuning the blending compositions change the thin film morphology and improves the transistor performance.