English  |  正體中文  |  简体中文  |  Items with full text/Total items : 69561/69561 (100%)
Visitors : 23205780      Online Users : 264
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/74068

    Title: 以微模型實驗探討蒸發對於孔隙介質內殘留和入滲流體互動之影響;The effect of evaporation on the interaction between resident and infiltrating fluids in porous media
    Authors: 陳翔;Chen, Hsiang
    Contributors: 水文與海洋科學研究所
    Keywords: 孔隙;微模型;新舊水;pore;micro-model;new old water
    Date: 2017-07-28
    Issue Date: 2017-10-27 13:07:16 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 土壤與地下水汙染的汙染物可能留存在非飽和層而未滲入地下水,殘存汙染物質和入滲雨水的互動將影響地表作物用水及地下水質。
    本研究利用以Pore doublet model和以Micro X-Ray CT所掃描之真實孔隙剖面影像為孔隙幾何製成的微模型,研究在不同的蒸發時間 (不同初始水量) 下新舊液體的交替過程,觀察殘留液體與新液體之間的互動機制。
    由於雙通道與真實孔隙的孔隙結構不同,殘餘液體形成機制也不同,造成兩組實驗結果有顯著差異,顯示過度簡化模型可能產生完全不同的研究結論。;Once the surface pollutants leak into soil and subsurface, they can remain in the unsaturated layer (vadose zone) without being permeated into groundwater. The interaction between the residual contaminants and infiltrating rainwater or irrigation water will affect the water usage of crops and the groundwater quality.
    In this study, by using the micromodels with patterns of pore doublet and real 2D pore geometry scanned by Micro X-Ray CT, I studied the alternation process of the old and new fluids subject to different evaporation times (with different initial water volumes) and observed the interaction mechanism between residual and incoming liquids.
    The results found that, in the pore-doublet micro-model experiment, the more liquid remains, the less likely it is to be discharged when the new liquid was infused. With micromodel of 2D pore geometry, the reduction of film water increased the old liquid residues. The denser the media structure is, the more likely it is to produce isolated areas, which blocked the entrance of new liquids.
    Because of the difference of opening structure between the pore doublet and the real pore geometry, the formation mechanism of the residual liquid will be different, contributing to the substantial differences in the experimental outcomes of the two groups, indicating that the oversimplified model may produce completely different study conclusions.
    Appears in Collections:[水文與海洋科學研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明