中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/74170
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 40301413      Online Users : 497
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/74170


    Title: 應用投射疊紋技術於齒輪精度量測;Gear Measurement by Projection Moire Technology
    Authors: 陳智怡;Chen, Jr-Yi
    Contributors: 光機電工程研究所
    Keywords: 疊紋條紋;齒輪檢測;相位移技術;相位還原技術;影像處理;拓樸誤差;Moiré fringe;Gear measurement;Phase shift technology;Phase unwrapped technology;Image processing;Error of topography
    Date: 2017-08-24
    Issue Date: 2017-10-27 13:14:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 近年來齒輪檢測發展趨勢走向非接觸式量測,有別於傳統齒輪檢測所使用的接觸式探針量測,非接觸式量測具有高效率、不受限於探針尺寸或齒輪材質等優勢,因此本研究建立一套非接觸式之光學量測方法應用於齒輪檢測,利用鹵素光源經自準直儀投射平行光束,穿透兩道線性光柵產生疊紋條紋後投射於待測齒面上,並透過影像擷取系統分析疊紋條紋影像以及計算齒輪各項誤差。
    本研究中首先將校正片置於待測位置,接著利用CCD感測器拍攝校正片進行影像畸變校正以確保光學量測結果不因鏡頭失真之影響而降低量測精度。完成影像畸變校正後,將待測位置上的校正片更換為齒輪,擷取投射於待測齒面上之疊紋條紋影像,疊紋因齒面之曲率變化產生變形,並藉由相移技術計算齒面上各量測點之相位變化,最後經由相位還原技術可得齒輪之三維輪廓。為驗證本研究之系統量測精度,分別利用三次元量測儀所量測之數據及理想齒形數據作為基準值建立一標準曲面,並且將本研究所計算齒面上各量測點之數據與標準曲面進行誤差比對,計算量測點至曲面之正交距離,即可得到齒面拓樸、齒形及導程誤差。由量測齒輪之拓樸誤差結果顯示,可得知本研究之系統量測精度為2.81 μm。
    本研究利用疊紋之高靈敏度的特性建立此齒輪檢測系統,藉由CCD感測器擷取疊紋條紋影像,並配合鏡頭畸變校正參數及影像處理,將光學量測點之數據與理想曲面進行比對後繪製誤差結果,其法不僅為高效率非接觸式之齒輪檢測系統,也可藉由調整疊紋條紋之密度及鏡頭以顯微鏡擷取疊紋影像來提高解析度達到高精度目的,若結合工業用之機台便可達到快速檢測齒輪之目的。
    ;In recent years, non-contact measurement becomes a mainstream technique for gear detection. Different from the traditional contact probe measurement method, non-contact measurement contains some advantages such as high efficiency and without the restriction from probe size or gear material. Therefore, in this study, a non-contact optical measurement method was adopted to gear detection. For the system architecture, a halogen lamp was chosen as the light source and a collimated beam was produced by autocollimator. Further, moiré fringe was built up as the collimated beam going through the two linear grating. Finally, the moiré fringe projected on the tooth surface and the errors of gear would be calculated by the image capture system.
    The process of the measurement system includes: (1) Placing the calibration piece at the testing position first. (2) Executing the distortion correction by CCD sensor in case of the image distortion caused by the optical elements. (3) Replacing the calibration piece with the gear after the correction step being completed. (4) Capturing the deformation of the moiré fringe projected on the tooth surface. (5) Calculating the phase change of the measured points by the phase shift technology and finally gather the available gear three-dimensional contour by the phase unwrapped technology. In addition, in order to verify the accuracy of the system, a real tooth profile measured by the coordinate measuring machine (CMM) would define as the reference profile. The tooth topography, tooth profile and lead errors could be obtained by comparing the deviation between measured and referenced data, and calculating the perpendicular distance from measurement point to the surface. The results of the spur gear show that the accuracy of the system developed by this research are 2.81μm.
    In this study, the high sensitivity of the moiré fringe was applied for the gear detection. The image was captured by the CCD sensor, and the data of the optical measurement points were compared with the ideal surface with the parameters of lens distortion correction and image processing. The method is not only implemented a high efficiency non-contact gear detection system, but also achieved the goals of high precision and resolution by adjusting the density of the moiré fringe and capturing the superimposed image by microscope. The ultimate goal of rapid detection of gears may be realized by combining the non-contact measuring system with industrial machine in the future.
    Appears in Collections:[Graduate Institute of opto-Mechatronics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML441View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明