English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41632736      線上人數 : 3729
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74701


    題名: 基於粒子群演算法之三維手寫文字辨識;Stereo-based 3D Space Handwriting Recognition Tracking by Particle Swarm Optimization
    作者: 楊恩慈;Yang, En-Cih
    貢獻者: 資訊工程學系
    關鍵詞: 立體視覺;連續密度函數;粒子群演算法;三維空間書寫;多層感知機;數字辨識;stereo vision;handwriting recognition;Particle Swarm Optimization;Probability Density Function;Multilayer Perceptron
    日期: 2017-07-28
    上傳時間: 2017-10-27 14:36:42 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年隨著低功耗之微型處理器蓬勃發展,大數據分析以及人工智慧受益於硬體性能的提升與網路的普及,得以應用於多元領域。在此背景下,電腦視覺領域同樣受惠於硬體更強的運算能力與人工智慧,能有效地解決問題、提高準確率,協助智慧化與自動化的發展。
    本論文主要研究於知悉手指與鏡頭之間距離並進行手指追蹤,並實現在三維空間中的手寫數字辨識。然而,此類三維手寫辨識系統通常利用具有紅外線感知功能的影像紀錄器,在戶外、或距離目標物較遠的情況,將無法有效地接收紅外線的反射,造成系統後續的指尖判斷、追蹤、軌跡判斷等都將難以進行。
    基於以上問題,本論文嘗試基於立體視覺產生深度資訊影像協助手指追蹤,循序漸進的方式判斷出手指,並進行追蹤,與軌跡判別。透過深度資訊,能夠判斷屬於目標的部份與鏡頭之間的距離,藉此特性能夠排除影像中非屬於此距離範圍中的物體及背景。
    本系統提出的方法不依賴設定參數取得感興趣區域的深度資訊範圍,而是利用連續密度函數( Probability Density Function, PDF )自動估算出感興趣區域的深度資訊範圍,並利用粒子群演算法( Particle Swarm Optimization, PSO ),追蹤目標物( 手掌 )。在取得手掌部份後,進一步利用灰階影像分析出手指尖的位置,改進深度影像無法檢測遠處細緻物體的問題,並記錄手指位置、移動路徑、判斷實筆( 文字筆畫 )、虛筆( 非文字筆畫的移動軌跡 )與修正軌跡。最後利用 MNIST 資料集訓練多層感知機( Multilayer Perceptron, 縮寫MLP ),將書寫軌跡輸入至多層感知機網路做數字的辨別。
    在實驗中,本系統將展示可靠、具自動追蹤、不限環境的三維空間手寫文字辨識系統。
    ;Recently, based on the improvements of hardware performance and the popularity of internet, big data analysis and artificial intelligence were successfully applied in a wide range of applications. Similarly, computer vision technology also benefited from the powerful performance of hardware and artificial intelligence, so that the computer vision technology could solve problem more efficiently and accurately and improve the development of automation.
    In this thesis, we aim at measuring the distance between the finger and camera, and tracking the finger to fulfill a stereo vision-based hand-writing recognition system in three-dimensional (3D) space. Traditionally, the researchers usually applied infrared sensors to recognize human′s hands. However, the infrared sensor solution still be challenged in hand tracking algorithm under widely varying lighting, distance limitation, and the outdoor condition.
    As mentioned above, this thesis attempts to generate the depth information based on stereo vision for improving the finger tracking. Through the depth information, we determine and track the fingers step by step. Also, tracking target would be excluded from other objects and background.
    In this thesis, the Probability Density Function is applied to get the threshold value, which could find out the region of interest automatically instead of manually. Furthermore, the proposed system uses Particle Swarm Optimization for hand tracking. After getting the hand (palm) position in each frame, the grayscale image would be used to analyze the fingers. Finally, the multilayer perceptron is used to train the MNIST dataset for hand-writing character validation.
    The experimental results demonstrate that the proposed system could recognize hand-writing digits in 3D space in high accuracy without any constraints and restricted environment.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML166檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明