中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/74703
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42447091      線上人數 : 1030
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74703


    題名: 複數型高斯過程回歸應用於語音分離;Complex-valued Gaussian Process Regression for speech separation
    作者: 霆元, 黎;Nguyen, Le Dinh
    貢獻者: 資訊工程學系
    關鍵詞: 高斯過程;高斯過程回歸;Gaussian Process;Gaussian Process Regression
    日期: 2017-07-31
    上傳時間: 2017-10-27 14:36:46 (UTC+8)
    出版者: 國立中央大學
    摘要: 語音分離在訊號處理中是一項具有挑戰性的問題,其在各種真實世界的應用中發揮了重要作用,例如語音辨識系統或電信通訊。語音分離的主要目標為從一個具有多個發話者的混合語音估計出個別發話者的語音。由於在一般自然環境下,語音訊號經常受到噪音或其它語音的干擾,語音分離因此變成一個有吸引力的研究課題。
    另一方面,高斯過程(Gaussian Process, GP)是一種基於核函數的機器學習方法,並且已經大量的被應用在訊號處理上。在此研究中,我們提出基於高斯過程回歸(Gaussian Process Regression, GPR)的方法來模擬混合語音訊號與乾淨語音之間的非線性映射,被重建的語音訊號可由GP模型的平均函數求得。模型裡的超參數(Hyper-parameter)由共軛梯度法(Conjugate Gradient Method)來進行最佳化。在實驗上使用TIMIT的語音資料庫,其結果顯示提出的方法有較好的表現。
    ;Speech separation is a challenging signal processing which plays a significant role in improving the accuracy of various real-world applications, such as speech recognition system and telecommunication. Its main goal is to isolate or estimate the target voice of each speaker from a mixed speech talked by various speakers at the same time. Due to the fact that speech signals collected in the natural environment are frequently corrupted by noise data, speech separation has become an attractive research topic over the past several decades.
    In addition, Gaussian process (GP) is a flexible kernel-based learning method which has found widespread application in signal processing. In this thesis, a supervised method is proposed for handling speech separation problem. In this work, we focus on modeling a nonlinear mapping between mixed and clean speeches based on GP regression, in which reconstructed audio signal is estimated by the predictive mean of GP model. The nonlinear conjugate gradient method was utilized to perform the hyper-parameter optimization. An experiment on a subset of TIMIT speech dataset is carried out to confirm the validity of the proposed approach.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML241檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明