隨著網路上的資料量越來越龐大,資料中心越來越普及。在資料中 心中兩個核心問題: 負載平衡與快速線路異常偵測也備受重視。負載平 衡是一個很重要的技術,用來處理動態、不可預測的交通需求量。一 般而言,負載平衡的目標是分配相等的交通量到多重路徑上。然而, 大多數的方法都受制於封包亂序或者無法及時回應。近年來,Flare 引 進基於flowlet 的分流方法,它達到快速回應且不造成封包亂序。但 是,資料中心內的高頻寬環境造成flowlet 減少。除此之外,分流的 細膩度會隨著交通量變大而變差,在此篇論文中,我們提出一個人工 flowlet 為基底的負載平衡演算法。能保持好的分流細膩度且避免封包 亂序,在實驗中顯示,我們的方法在封包的完成時間改進20%。快速 線路異常偵測幫助資料中心在發生線路異常時可以快速啟動錯誤導向 機制,減少資料中心中的資料丟失時間。此篇論文在負載平衡的做法 上搭配快速線路異常偵測方法。將線路異常偵測所需時間壓縮在毫秒 等級,同時達成負載平衡與快速線路異常偵測效果。 關鍵詞:資料中心、資料中心負載平衡、快速線路異常偵測;Load balancing is an important technique to cope with dynamic and unpredictable traffic demands in data center networks. In general, load balancing schemes aim to split traffics evenly among multiple paths. However, most existing approaches either suffers from packet reordering (which may confuse TCP congestion control) or fail to quick response (i.e., coarse slicing granularity). Recently, FLARE introduced a burst (called flowlet) based traffic splitting, which attains responsiveness without causing packet reordering. However, the very high bandwidth of internal datacenter flows suggests that the gaps needed for flowlets may be rare. Besides, in Flare, splitting granularity increases (i.e., coarse granularity) when flow size increases. In this paper, we propose an artificial flowlet-based load balancing algorithm which can maintain fine-granularity (even in large flows) and can also avoid packet reordering. Our scheme has at least 20% improvement in flow completion time under the same incidence of packet reordering.