English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41634315      線上人數 : 2629
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74719


    題名: 非侵入式手機使用者識別機制 : 線上機械學習研究;Nonintrusive Behavioral Biometric Authentication on Smartphones: An Online Learning Approach
    作者: 蘇菲亞;Putri, Sufia Adha
    貢獻者: 資訊工程學系
    關鍵詞: 驗證;手機;安全;生物特徵;authentication;smart phone;security;biometric
    日期: 2017-08-15
    上傳時間: 2017-10-27 14:37:14 (UTC+8)
    出版者: 國立中央大學
    摘要: 傳統驗證方法如PIN和密碼因容易被破解或是複製已經被證明是不安全的,為了解決這個問題,在數位安全機制的研究上出現越來越多針對生物識別安全的實踐。基於生物特徵的認證機制的目標是利用生理或行為特徵來驗證合法使用者身份。雖然大多數的生物識別系統使用物理資料作為特徵,但生理特徵仍然容易被偽造。本研究提出了使用生物識別資料,特別是行為資料作為特徵的智慧型手機認證系統。使用行為資料作為特徵帶來的優點是認證密鑰會適應使用者特質,因此使用者不需要記住認證密鑰,且行為數據很難被詐騙、仿冒。此外,在這項研究中所提出的認證系統是基於非侵入式方法設計的,非侵入式方法可以更好的在背景運行以監測使用者行為。

    過往的生物識別安全文獻當中,多半是使用批量學習方法來訓練驗證系統。本研究中,採用線上學習方式來提供了一種新穎的方法,為提出的系統隨時間推移建構用戶模型。線上學習方式不僅較符合現實世界的情況,還能提供比批量學習更快的訓練時間。實驗結果顯示,線上學習方式比過去在這一領域的其他方法快75%。線上學習方式的另一個好處是該模型能夠適應使用者行為變化。實驗結果顯示,線上學習方式的EER值較其他不會更新的模型較低,線上學習方法也讓模型隨時間推移改進,現在時間點的註冊者模型的EER值相較於之前時間點更新的模型來的更低。本研究也對我們提出的線上學習方法和與批量學習方法使用盒鬚圖統計分析方法進行比較效能。根據實驗結果顯示,本研究提出的方法之第一四分位數優於批次學習,而中位數接近於批量學習;The traditional authentication mechanisms such as Personal Identification Number (PIN) and password had proven to be insecure as they can be cracked or duplicated easily. To address this issue, the advancement of research on digital security mechanism has seen an increasing interest on the implementation of biometric security system. The objective of biometric-based authentication mechanism is to utilize either physical or behavioral feature to authenticate the genuine users. Even though most biometric authentication systems use physical data as the feature, the physical feature is still prone to the spoofing attack. In this work, a smart-phone authentication system that uses biometric data, specifically behavioral data, to authenticate user is proposed. Using behavioral data as a feature gives the benefit that the authentication key will adapt to the user characteristic so the users do not need to remember the authentication key. The behavioral feature is also difficult to be spoofed and imitated. Moreover, the proposed authentication system is designed based on the non-intrusive approach. The proposed non-intrusive authentication mechanism offers a better solution as the system monitors user′s behavior in the background.

    Generally, most researches in the biometric security mechanism use batch learning approach to train authentication system. In this work, online learning approach is adopted to offer a novel method to build the user model over a period of time. Not only mimics the real world situations, online learning approach offers a faster training time when it is compared to batch learning. In the experiment results, the online learning approach has an around 75\% faster training time compared with the previous works in this field.

    Another benefit of online learning approach is the capability of the model to be adaptive to user behavior change. In the experiment results, the online learning approach shows lower Equal Error Rate (EER) than the model that is never updated. The online learning approach also shows the model improvement over period of time. Comparing the result of the updated models in online learning approach over a period of time, the current user model has a lower EER than the previously updated model. In this work, the performance of proposed online learning approach is also compared to batch learning approach using box plot statistical analysis. From the experiment results, it showed that the first quartile of proposed work is better than the batch learning and the proposed work has median value near to the result of batch learning.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML213檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明