English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42766129      線上人數 : 943
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74724


    題名: 基於深度學習之復健動作辨識系統;A Deep Learning Approach to the Recognition of Rehabilitation Exercises
    作者: 戴邦地;Tai, Pang-Ti
    貢獻者: 資訊工程學系
    關鍵詞: 深度學習;動作辨識;Kinect 2;復健;deep learning;motion recognition;Kinect 2;rehabilitation
    日期: 2017-08-15
    上傳時間: 2017-10-27 14:37:23 (UTC+8)
    出版者: 國立中央大學
    摘要: 現代社會有許多人因各種疾病傷痛導致生活機能受損,為了幫助患者回復受損的機能,復健醫療是不可或缺的。然而常常因為患者眾多,而面臨醫療人力與醫療資源不足的問題。此時若能將復健醫療結合現代科技發展輔助系統,讓患者於家中也能從事適當且規律的復健運動,將有助於改善患者受損的生活機能。
      復健輔助系統須能正確辨識患者的動作,才能有效進行復健運動,此時動作辨識的準確率扮演了十分重要的角色。本論文結合Kinect 2感應器與深度學習技術,提出一套動作辨識系統。對於動作的特徵擷取,本論文基於人的深度影像提出一套新的方法,此方法的主要概念是將與時間相關的一連串動作轉換成一張軌跡圖表示,本論文稱之為動作軌跡圖。以動作軌跡圖作為動作的特徵,利用卷積神經網路進行動作辨識。
      本論文以12種復健動作為例進行實驗,在動作軌跡圖方法的各個步驟使用不同方法進行測試與比較,最後採用效果較好的方法。實驗結果顯示本論文提出之動作軌跡圖方法結合深度學習技術在動作辨識上具有不錯的辨識能力。;Many people suffer from inconveniences due to various kinds of diseases or bodily injury in modern society. In order to help these people, physical rehabilitation is indispensable. However, too many patients may cause a shortage of medical resource. Therefore, if a combination of physical rehabilitation and modern technology could be made, patients can improve their health condition by performing proper rehabilitation exercises in their own place with a rehabilitation system.
      A rehabilitation system should be able to recognize the motion performed by patient correctly. The accuracy of motion recognition plays a very important role in a rehabilitation system. This paper provides a motion recognition system which uses the Kinect 2 sensor with the deep learning techniques. This paper introduces a new method of feature extraction. The main concept of this method is to convert a motion into a motion trajectory image. The motion trajectory image is then used as the input of convolutional neural networks for motion recognition.
      This paper uses 12 types of rehabilitation exercises in our experiment. We have tried different ways in each step of our method, and we finally choose one with a better result in our test. According to the result, our method has a good ability in motion recognition.
    顯示於類別:[資訊工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML244檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明