中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/74924
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41642429      在线人数 : 1405
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74924


    题名: Szemerédi’s Regularity Lemma and Its Applications;Szemerédi’s Regularity Lemma and Its Applications
    作者: 譚芮妲;Tarigan, Regina Ayunita
    贡献者: 數學系
    关键词: extremal graph;partition graph;arithmetic progression;triangle removal lemma;graph density;random graphs;ϵ-regularity;ϵ-regular partition;equipartition;Szemerédi;Regularity Lemma;Roth′s Theorem;extremal graph;partition graph;arithmetic progression;triangle removal lemma;graph density;random graphs;ϵ-regularity;ϵ-regular partition;equipartition;Szemerédi;Regularity Lemma;Roth′s Theorem
    日期: 2017-05-05
    上传时间: 2017-10-27 16:12:10 (UTC+8)
    出版者: 國立中央大學
    摘要: 在本篇論文中, 我們研讀探討在圖論領域裡的著名定理 Szemerédi’s Regularity Lemma 以及此定理的應用. 簡單來說 Szemerédi’s Regularity Lemma 可以將一個圖分解成許多幾乎相等的分割, 而這些分割之間彼此兩兩幾乎是隨機的分佈. 最後我們將討論如何使用此定理運用在數論的一個著名的定理, 所謂的 Roth′s Theorem. 此定理敘述任一個整數的子集合存在長度為三的等差數列只要此集合的密度大於零.;In this dissertation, the Szemerédi’s Regularity Lemma and its application are studied. This lemma is used to partition a large enough graph into almost equal parts so that the number of edges across the parts is fairly random. On the other hand, Roth′s Theorem states that there exists an arithmetic progression with length 3 in a subset in integer with positive upper density. We shall see that it can be proved by using triangle removal lemma, which is an application of Szemerédi’s Regularity Lemma.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML304检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明