在這篇文章中,我們考慮在R上的函數Φ(x) = (x^2)/2,那麼可以得到擬度量ρ(x, y) = ((x-y)^2)/2 和 section。我們證明了如果R上的任意兩點x, y 滿足ρ(x, y)≧ 1 時就有|D_0HD_0|≦Cρ(x, y)^(-1)的話,則Monge–Ampère 奇異積分算子 H 在關於 section 的非齊次的 Besov 空間是有界的。;In this paper, we considerΦ(x) = (x^2)/2 on R. Then we haveρ(x, y) = ((x-y)^2)/2 and the section. We show that the Monge–Ampère singular integral operator H is bounded on be the inhomogeneous Besov space associated with these sections if |D_0HD_0|≦Cρ(x, y)^(-1) for any x, y in R, ρ(x, y)≧ 1.