中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/74946
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41641739      Online Users : 1519
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/74946


    Title: ZCm 的理想環生成元個數之上限;An Upper Bound for the Number of Generators of an Ideal in ZCm
    Authors: 鄭至人;Cheng, Chih-Ren
    Contributors: 數學系
    Keywords: 整數群環;廣義歐幾里德;半局部環;穩定秩;integral group ring;generalized Euclidean;semilocal ring;stable rank
    Date: 2017-07-14
    Issue Date: 2017-10-27 16:12:41 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 在1966年,P. M. Cohn 受到佈於歐幾里德環的可逆矩陣可以用基本方陣列簡化為單位矩陣這個性質的啟發,介紹了廣義歐幾里德環的概念。在1984年,Dennis、Magurn 與 Vaserstrin 證明有限循環群Cm的整數群環ZCm是廣義歐幾里德環。已知廣義歐幾里德環是quasi-歐幾里德環且quasi-歐幾里德環是廣義歐幾里德環。本文中,對於非明顯交換群G,我們建構一個ZG的有限生成非主理想環來證明ZG既不是歐幾里德環也不是quasi-歐幾里德環,並且給出ZCm的理想環生成元個數之上界。特別是當m為一個質數的次方時,我們給出更嚴謹的上界。在最後一章裡,藉由Wedderburn-Artin 定理,我們會用一個比Bass的證明更容易理解的方式來證明:半局部環的穩定秩為一,所以它是廣義歐幾里德環。;In 1966, P. M. Cohn introduced the concept of a generalized Euclidean ring, inspired by the property that any invertible matrix over a Euclidean ring can be row-reduced to the dentity matrix by elementary matrices. In 1984, Dennis, Magurn and Vaserstein proved that the integral group ring ZCm of finite cyclic group Cm is generalized Euclidean.
    It is well known that a Euclidean ring is quasi-Euclidean and a quasi-Euclidean ring is generalized Euclidean. In this thesis, we construct a fi nitely generated nonprincipal ideal of ZG for nontrivial abelian group G to show that ZG is neither Euclidean nor quasi-Euclidean. Moreover, we give an upper bound for the number of generators of an ideal in ZCm. The case m being a power of a prime is treated more seriously. In the final chapter, following the Wedderburn-Artin Theorem, we give a more accessible proof than Bass′ to show that a semilocal ring has stable rank one, hence it is a generalized Euclidean ring.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML402View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明