English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 62278/62278 (100%)
造訪人次 : 17916100      線上人數 : 183
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74974


    題名: A full-space quasi Lagrange-Newton-Krylov algorithm for trajectory optimization problems with space mission
    作者: 王璿豪;Wang, Hsuan-Hao
    貢獻者: 數學系
    關鍵詞: 最佳化控制;軌跡最佳化問題;全空間類牛頓法;衛星載具動力學
    日期: 2017-08-24
    上傳時間: 2017-10-27 16:14:29 (UTC+8)
    出版者: 國立中央大學
    摘要: 軌跡最佳化是航太工業經常使用的技術,例如找出最佳軌跡使得酬載重量最大化或是縮短衛星到達目標軌道的時間等等,這種類型的問題可以用數學建模成連續時間的最佳化控制問題。本篇論文主要是研究full-space quasi Lagrange-Newton-Krylov method作為數值求解器,首先會引入拉格朗日乘子將有約束的最佳化問題轉為無約束的最佳化問題,並求解一階必要條件(KKT condition),透過牛頓法結合回朔技術,在每一次牛頓迭代中,所有KKT系統的變數(狀態變數, 控制變數, 設計變數, 拉格朗日乘子) 會以 Krylov-subspace method 配合預處理技術同時被解出。本文會針對KKT系統中的 Hessian matrix 的建造找出提高計算效能的方法,並透過引入鬆弛變量來解決不等式限制條件問題。本文以三維座標的三節火箭問題和二維座標的金牛座火箭作為數值範例,相關的物理背景和數值結果將會在文章中呈現。;The trajectory optimization is a commonly-used technique of applications in aerospace engineering, such as find the optimal trajectory to maximize the weight of the payload or minimize the time for satellite insertion the target orbit, etc. This type of problem can be modeled mathematically as some form of continuous time optimal control problems. This thesis focuses on the study of the full-space quasi Lagrange-Newton-Krylov method as our numerical solver. First, we introduce the Lagrangian multiplier to convert the constrained optimization problem into unconstrained optimization problem, and solve the first-order necessary condition(KKT condition). By the Newton method combined with the backtrack technique, in each Newton iteration, all KKT system variables (state variables, control variables, design variables, Lagrangian multipliers) will be solved at the same time by Krylov-subspace method with the precondition technology. In this thesis, we improve the computational efficiency of Hessian matrix constructor in KKT system, and solve the problem of inequality constraint by introducing slack variable. The three-dimensional case of the three stage rocket problems and two-dimensional case of Taurus rocket as a numerical example, the relevant physical background and numerical results will be presented in the thesis.
    顯示於類別:[數學研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML79檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋  - 隱私權政策聲明